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1Abstract—Quantum key distribution (QKD) is based on the
laws of quantum physics and therefore it can guarantee the
highest level of security. It is used to establish the key that is
used for further symmetrical encryption. Since QKD consists
of several phases in which the key is reduced, it is necessary to
define the equation by which the length of the raw key is
calculated. In this paper, we analyse all QKD phases with an
emphasis on the explanation of the process of shortening the
initial key. The results are verified with a large number of tests
using a quantum cryptography simulator.

Index Terms—Cryptography, security, quantum mechanics,
cryptographic protocols.

I. INTRODUCTION

It seems likely that quantum cryptography (QK) or to be
precise, quantum key distribution (QKD), can be used in
every day’s life to provide unconditionally secure
distribution of secret key material. QKD uses quantum
physical principles to establish symmetrical binary keys
between legitimate users that will use these keys to encrypt
theirs communication data. However, QKD link has several
limitations: distance limit, point-to-point link behavior,
limited key generation rate and dedicated optical
infrastructure which significantly affect the final cost.

It is interesting to compare the key rates from QKD
networks which were constructed in previous years. In 2002,
QKD systems achieved key rate of 1 kbps [1] which was
used in the first QKD network in the world, DARPA QKD
network. In 2007 in SECOQC, this key rate has increased
tenfold [2] while in 2011 in Tokyo QKD network the key
rate of 300 kbps have been achieved [3]. Therefore, it is
reasonable to expect higher key rates in the coming years.
This key rate is very important because it dictates the type of
encryption to be used in the network. If the key rate is not
high enough, solutions like one-time pad (OTP), which has
been proven to be the most secure solution [4], cannot be
used due to lack of key material.

An OTP uses a keystream of fully random digits that are
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combined with plaintext one at a time to form the ciphertext.
Consequently, OTP requires the same amount of key
material as the amount of data to be encrypted.

QKD employs two distinct channels between
communicating parties: quantum channel which is used for
transmission of quantum key material encoded in some of
photon’s properties and public channel which is used for
verification of exchanged key material. Key material
obtained through the quantum channel is often called raw or
initial key material, and this material is further processed
over public channel which results with the final key
material.

As initially proposed by DARPA [1] and later applied in
SECOQC [5] and Tokyo, QKD links in QKD networks are
organized on the following way: both endpoints of
corresponding QKD link have a storage key reservoir and
these reservoirs are gradually filled with the final key
material. Later, this key material is used with IPsec protocol
suite to encrypt one or more secure virtual private network
(VPN) tunnels through the unsecure Internet. Obviously, the
type of used encryption determines the speed of emptying
reservoir, while the key rate of QKD link determines the
charging rate of storage reservoir.

Due to small key rate, previously mentioned QKD
networks were focused on IPsec solution with rapid
changing of 128-bit or 256-bit Advanced Encryption
Standard (AES) keys between the parties. Faster key
exchange means higher level of security, so solutions where
12,500 keys per second have been exchanged were
implemented [6]. The aim was to get close to lower Data
Bits per Key Bit (DPK) limit which is based on birthday
bound and resemblance to One-Time Pad (OTP)
consumption.

In recent years there has been significant development in
terms of increasing the key rate, so it is necessary to
consider the cases in which key rates are sufficient for OTP
encryption. In this paper we present an equation which can
be used to calculate the total length of the raw key based on
the length of the final key. For testing purposes we used the
payload size of the most popular VoIP codecs, and we
verified results with the QK simulator [7] with more than
500,000 experiments.

This paper is organized in the following way: in Section
II, the BB84 protocol is explained. The results of the
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calculation are shown in Section III, and the final
conclusions are presented in Section IV.

II. QUANTUM KEY DISTRIBUTION PROTOCOLS

Quantum key distribution (QKD) protocols are used for
providing a key to the participant of symmetric system
transmission in a safe manner. There are several QKD
protocols, such as Ekert’s entanglement based E91 protocol
[8] and SARG04 protocol by Scarani et al. [9] and others.
They consist of nearly identical steps at a high level, but
differ, among others, in the way the quantum particles or
photons are prepared and transmitted. We choose the BB84
protocol, which is the first proposed QKD scheme and still
the most widely used in practice. This protocol was
presented in 1984 by Bennett and Brassard [10] and it
consists of the following five successive stages: secret key
exchange, extraction of the raw key, error rate estimation,
key reconciliation, and privacy amplification.

A. Secret Key Exchange
At the beginning of communication, the sender

hereinafter named Alice and the recipient hereinafter named
Bob must agree on the same alphabet. BB84 assumes that
the polarization of photons is used as a carrier of
information, so Alice defines a random key with a length Q
and uses a randomly selected polarization from the alphabet
as a carrier of the key. For example, for the bit value 1 she
can choose either vertical (x = 90°) or diagonal polarization
(x = 45°), and for the bit value 0 she can choose either
horizontal polarization (x = 0°) or opposite diagonal
polarization (x = -45°). On the receiving side of the quantum
channel, Bob chooses a randomly selected basis for
detection. Since Bob does not know which basis Alice has
used, and he uses a randomly selected basis, he will be able
to reliably detect only 50 % of the sent key.

B. Extraction of a Raw Key - Sifting
After exchanging the key values via the quantum channel,

all further communication is performed via the public
channel. First, Bob informs Alice which polarization basis
he has used for each received bit. Second, Alice responds
when Bob uses the correct polarization basis and when he
uses incompatible bases (these bits must be removed). It
must be stressed that Bob only discloses information about
the used basis, while the value of the measurement remains
secret. After this step, Bob is certain of the sequence of the
correct polarization he used for detection. However, we can
conclude that the length Q of the raw key is significantly
decreased. Bob reliably receives approximately 50 % of the
raw key. In the rest of this paper, B represents the length of
Bob’s reliably received key.

C. Error Rate Estimation
The purpose of error estimation is to determine the

percentage of errors in the key after quantum transmission
and sifting have occurred. Errors may occur because of a
disturbance of the quantum channel, noise in the detectors or
an optical misalignment and other reasons. But errors may
also occur due to eavesdropping by eavesdropper Eve.
However, the threshold of bit error rate for optical channel
without presence of Eve is known in forward so Alice and
Bob must compare a small portion of their key in order to

estimate the quantum bit error rate (QBER). If the error rate
is higher than a given threshold, Alice and Bob revealed the
presence of Eve and the key distribution process starts all
over again.

If we mark n as the total length (Q) of the raw key then
the number of bits k that will be used for the QBER
estimation depends on the length of the sample block used
for error rate estimation which is defined with a parameter
we refer to as “level of security” Ŝ(k). In [11], two levels of
security are defined: basic and advanced. Alice and Bob
must select the desired level of security Ŝ(k), and use (1) to
calculate k.

However, Alice and Bob must delete the part of the key
which they used for estimation of the error rate. It means
that the raw key will be shortened even more. We use
notation R to mark the length of the key after this phase.
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D. Key Reconciliation
When Alice and Bob are sure that the key distributed via

the quantum channel has a low error rate, they must find and
correct or delete all errors in the rest of the key. This phase
is known to be highly interactive and time-consuming, since
the discussion about the location of errors in the key is
performed through the public channel. The cascade protocol
[12] is the most widely used reconciliation protocol due to
its simplicity and efficiency. It is run iteratively in the given
number of iterations where random permutation of the key is
performed with the objective to evenly disperse errors
throughout the key. Next, the permuted key is divided into
equal blocks of ki bits, and after each iteration permutations
are performed again and the block size is doubled: ki = 2ki-1.
For each block, Alice and Bob will exchange the results of
the parity test and perform a binary search to find and
correct errors. Instead of going through all the iterations
continuously, the Cascade protocol investigates errors in
pairs of iterations. The process is recursive. This means that
no bits are discarded during the first iteration. It also means
that for any error corrected in the second iteration there must
be at least one matching error contained in the same block in
the previous iteration, since neither error was found or
corrected in that iteration. For this reason, for each
correction made in any iteration after the first one, a binary
search is rerun on the block containing the bit corrected in
all previous iterations, in order to identify any potential
matching errors. For any new error detected, it follows that
another error in a previous iteration was masked, thus the
process is repeated so that the error detection and correction
process cascades through all previous iterations. This
process is illustrated in Figure 1, where the following
notation is used: ei represent identified errors, em represent
masked errors, and ec represent errors that have already been
corrected.

However, the length of the initial block k1 is a critical
parameter, and should depend on the estimated error rate.
An empirical result in [12] indicates that the optimal value
of k1 is 0.73/p, where p is the estimated error rate (QBER)
[12]. The Cascade protocol is modified in [13], with the aim
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of reaching the theoretical limit for protocol efficiency.
From these results, it is clear that four iterations are
sufficient for a successful key reconciliation, as was
suggested in the [12]. However, since the initial block length
depends on the estimated error rate, it is necessary to
perform all the iterations. The number of iterations i is
increased to the value for which the length of block ki can be
used to split the raw key into two parts ( < ).

Fig. 1. Error detection process in cascade protocol.

Now, let us go back to the parity check results. If the
parity of a block disagrees between Alice and Bob, they
perform a binary search on that block with the aim of
identifying the single bit error. The binary search consists of
dividing the block in half and comparing the parity check
results for the divided block until the error is located. This
means a maximum of 1 + ⌈log ⌉ parity bits are
exchanged for each block with an error bit since ⌈log ⌉ is
the maximum number of times block ki can be divided, and
one parity bit is exchanged for blocks without errors. In
order to minimize the amount of information gained by Eve,
it is advisable to discard the last bit of each block and sub-
block for which the parity bit was exchanged. Now if we
define Li as the maximum number of leaked bits, and ki as
the length of the block in the ith iteration, it is clear that
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This can be shorted [14] to
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where = 2 , < and n is the length of the initial
key. Now it is clear that the number of leaked bits depends
on the initial block size and error rate. From the results
presented in [13], we can conclude that the majority of
errors are corrected in the first two iterations.

TABLE I. PERCENTAGE OF CORRECTED ERRORS PER
ITERATION.

Iteration I II III IV
Percentage of

corrected
errors

54.5223 % 45.3478 % 0.4517 % 0.002 %

We mark the length of the key after the key reconciliation

phase as F.

E. Privacy Amplification
Alice and Bob finally have an identical key without

errors, but since Eve may have gained significant knowledge
of the key, Alice and Bob should strengthen their privacy.
This is done by deleting some of the bits of the final key, so
the raw key is shortened even more. The number of rejected
bits during the privacy amplification process is defined in
(4) [15], where S is the number of bits that need to be
discarded and n is the length of the key (B).

2 1.
log 2

Sn 
 (4)

We mark the length of the final key after this phase as A.
Now we can compare the length of the key in each previous
step

.Q B R F A    (5)

Finally, this means that the raw key (Q) must be
significantly longer than the key after being reduced in all
phases explained above (A). The final key must be long
enough to be used for the encryption and decryption of
confidential data.

III. CALCULATIONS

It is difficult to predict the precise length of the final key
(A) since it depends on the error rate in the quantum channel
and the Eve’s influence. It also depends on the number of
leaked bits and the number of iterations needed to discover
the errors in the key. A short key cannot be used for strong
encryption, while a longer key can be shortened. As such, it
is necessary to define the length of the raw key (Q) which
will result in a usable length of the final key (A). For testing
purposes we used the payload size of the most popular VoIP
codecs listed in Table II.

TABLE II. VOIP CODECS WITH BIT RATE AND PAYLOAD SIZE.

Codec & Bitrate Voice Payload
Size (bits)

G.711 (64 Kbps), G722_64k (64 Kbps) 1280
G.726 (32 Kbps) 640

G.726 (24 Kbps), G.728 (16 Kbps) 480
G.723.1 (6.3 Kbps) 192

G.729 (8 Kbps), G.723.1 (5.3 Kbps) 160

To summarize, we present the formula for calculating the
length of the raw key (Q) from the length of the final key
(A), error rate and parameter “level of security” Ŝ(k).
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where S – percentage of raw key (Q) used for calculating
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QBER; L – number of bits leaked during the key
reconciliation phase; A – length of the final key.

Equation (6) is the Lambert W-function, also known as
the Product Logarithm function, and it has two solutions in
the real domain. We are interested in the second solution.
The value of L for different values of error rate is shown in
Table III, while the lengths (Q) of the raw key based on the
length of the final key (A) and error rate for different
security levels Ŝ(k) are shown on Fig. 3–Fig. 5.

TABLE III. MAXIMUM NUMBER OF LEAKED BITS (L).
QBER

Key length (bits) 0.01 0.05 0.10 0.15

1280 45 182 385 537
640 26 94 194 271
480 22 72 147 204
256 15 41 80 111
192 13 32 61 84
160 13 27 52 71
128 12 23 42 57

Fig. 3. Length of raw key (Q) based on final secret key (A) and error rate;
S(K) = 0.06 => 25.30 %.

Fig. 4. Length of raw key (Q) based on final secret key (A) and error rate;
Ŝ(k) = 0.11 => 39.10 %.

Fig. 5. Length of raw key (Q) based on final secret key (A) and error rate;
Ŝ(k) = 0.15 => 50.25 %.

Table III shows how the maximum number of leaked bits
(L) increases with error rate. It is easy to see that the values
of leaked bits for error rate 0.01 increases more than double
for error rate 0.05.

IV. VERIFICATION OF RESULTS

Following the publication of the Cascade protocol in 1994
[12], different implementations with different initial key size
k1, such as [13] and others, appeared. In this paper, the
original concept of the Cascade protocol is used, where
Equation 3 is used to calculate the maximum number of
leaked bits. The initial block size ki depends on the
estimated error rate, which does not need to be equal to the
actual error rate in the quantum channel. Additionally,
Table I shows that 99 % of errors are corrected in the first
two iterations, thus a further search for errors and leakage of
bits is not needed. This means that in practice the values
from (3) will not always be achieved. Since (3) is directly
included in (6), it follows that (6) is insufficiently precise.
This means that the output of (6) must be reduced by a value
that will adjust the result to values that are common in
practice. Let us consider the following example as a further
explanation:

The length (Q) of raw key from (6) for input values
A = 192, L = 13, p = 0.01 and S = 0.2530 (Ŝ(k) = 25.30 %)
is calculated, and it is 573 bits. We tested this value with a
QC simulator [7] and we obtained higher values of the final
key length (A) than the required 192 bits. It means output
from (6) should be reduced so it can match values obtained
in practice. This was achieved using (7), and the values for
which (7) has been reduced are presented in Fig. 6. To
verify this modification we used the QC simulator [7] by
generating more than 500,000 keys. We measured their
dispersion, dependence on error rate p and Ŝ(k) values.

Fig. 6. Dependencies between values obtained from (6) and desired values
for the defined error rate and Ŝ(k) parameter.

Figure 6 shows the difference between values calculated
from (6) and the desired values. From this figure we can
conclude that with a lower Ŝ(k) this difference is almost
linear (value 25.30); however, as Ŝ(k) increases, the curve
becomes increasingly rounder, finally reaching a parabolic
shape for value 50.25.
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Equation (7) is written such that 90 % of results obtained
are greater than the desired final key length (A) while
remaining very close to this value, as shown in Fig. 7. The
mean value of all measurements is greater than the desired
final key length (A) while remaining very close to it.
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Figure 7 and Fig. 8 are simple boxplot graphs where the
top of the box marks the 75th percentile for the data set; the
bottom of the box marks the 25th percentile for the data set;
the central line marks the data set median; ends of the
whiskers (lines extending from the boxes) mark the highest
and lowest values of the data set that are within 1.5 times the
interquartile range of the box edges (the fence); and the plus
signs mark individual values outside the range of the
whiskers.

From Fig. 7 we can conclude that there is less dispersion
of values for a greater “level of security” parameter. In our
experiment, standard deviation for Ŝ(k) = 25.30 %, 39.10 %
and 50.25 % was 2.3147, 1.7481 and 1.2386, respectively.
This behavior is a feature of Ŝ(k) function.

Fig. 7. Comparison of final key length for different error rates where Ŝ(K)
= 0.11 => 39.10 %; the desired final key length is 192 bits.

Fig. 8. Comparison of final key length for different values of the Ŝ(K)
parameter; the error rate is 1 % and the desired final key length is 192 bits.

It is important to underline that the maximal tolerated
quantum bit error rate (pmax) is defined as 12.9 % [5], [16],
and for QBER values that are below this threshold (p ≤ pmax)
(6), (7) provide very accurate results.

V. CONCLUSIONS

It is difficult to predict the length of the final key (A)
since it depends on the error rate in the quantum channel. In
this article we present (6), (7) which are used to calculate
the length of the raw key (Q) based on the length of the final
key (A). For testing purposes we used the payload size of
the most popular VoIP codecs, and we verified results with
the QK simulator [7] with more than 500,000 experiments.

From (7), it is clear that the length of the final key
increases with the parameter error rate (p) and the “level of
security” Ŝ(k). Figures7 and Fig. 8 show the values are
spread more widely when the error rate is higher, and when
the value of Ŝ(k) is lower. It is worth noting that the
influence of eavesdropping is not included in (6) since the
entire QKD process will be repeated if the estimated QBER
is higher than maximal tolerated QBER (pmax).

The main contribution of this paper lies in providing a
way of calculating the raw key length based on the desired
final key length used in QKD. Using equations presented in
this article it is possible to accurately calculate the amount
of raw key material which is subsequently processed and
stored in storage reservoirs in order to be used later to
encrypt data traffic. Equations presented here can be used to
calculate the key consumption of other traffic, regardless of
VoIP.
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