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1Abstract—Energy consumption, indeed, represents one of
the essential properties of embedded applications, especially
for those devices whose autonomy depends on battery life. The
lack of accurate and suitable methodology for energy
consumption estimation for embedded applications based on
ultra-low power heterogeneous multicore DSP platforms
inspired a solution that will be presented in this paper. The
solution has been developed as a plugin for the Eclipse based
MIDE (Multicore Integrated Development Environment), in
order to facilitate production of energy efficient firmware
solutions. Evaluation of energy loss has been calculated using
instruction-level power analysis, virtual platform, debug
information, and diverse input loads. The primary goal was to
obtain a precise model of energy consumption that will
establish a direct link between program solutions and the
amount of energy required for their execution, whilst
processing different input loads. Estimation has been validated
against empirical data, measured on a real DSP platform.
Results show that very high accuracy has been reached.

Index Terms— Embedded software; energy consumption;
performance evaluation; software metrics.

I. INTRODUCTION

Energy consumption has always been promoted as one of
the most important aspects of engineering in general, since it
has immense influence on designing process. Accurate
estimation and evaluation of energy consumption, therefore,
could facilitate development and production of energy
efficient solutions. The scope of this paper is focused on the
calculus for power analysis and energy cost of software
solutions whilst running on embedded DSP platforms.
Increased ongoing expansion of embedded devices implies
the necessity of a research in this area.

Basically, there are two different approaches to energy
consumption estimation that can be applied to embedded
devices [1]: Physical measurements on real hardware, and
simulation based modelling. It was established in [2], [3]
that the first approach, which includes measurements of the
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current drawn by the processor, gives the most accurate
information about the power cost. Taking that into
consideration, as well as the lack of a hardware simulation
model, such as SPICE or similar, for the target DSP
platform, has encouraged us to choose the first strategy, and
to conduct measurements on our own.

There are five distinct levels of power management that
can be applied to computer systems [4]: application level,
compiler level, operation system level, architecture level,
and circuit level. The case study presented in this paper
deals with power management mostly on application level
[5]. The main goal was to provide an efficient and accurate
tool for power analysis that will guide a firmware developer
through the application development process in order to
enhance software energy efficiency. The solution presented
in this paper extends significantly the simple model
presented in [6]. This paper proposes a new instruction-
level, cycle accurate, energy consumption estimation model
that was applied and tested on a multicore, ultra-low power,
heterogeneous DSP platform. Besides instruction energy
costs, the model also takes into account energy costs related
to DSP platform peripherals. The estimation model is
universal and applicable to any DSP platform; only target
specific measurements should be performed using the
methodology described in this paper.

The entire solution has been developed as a plugin for the
Eclipse RCP [7] based Multicore IDE presented in [6];
therefore, it is easily transferrable to any other RCP based
IDE, thus contributing to the universality of the solution.

Sections below are organized in the following order.
Section II depicts related papers. Section III presents
mathematical model of energy consumption estimation.
Section IV provides insight into the proposed measurement
methodology. Section V contains a detailed description of
experiments, and the results, that have been conducted as a
part of validation and verification process. Section VI
concludes the paper.

II. RELATED WORK

As diverse as embedded platforms and the appliance
domains are, there is a wide variety of solutions dealing with
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energy consumption estimation, but an absence of universal
solutions that can be applied to the entire set. The model
proposed by this solution aims to make a contribution
towards that direction.

The models proposed in [1], [8] require hardware
simulation models that are, in most cases, unavailable (like
for the target platform presented in this paper), and less
accurate than the physically measured data.

Methodologies presented by [2], [9], [10] take into
account only the energy that is consumed by the processor
while executing instructions, as well as inter-instructions
effects, but discussion about other energy dependent
modules, such as peripherals, is omitted.

In [3], the spotlight was placed on the power estimator
that could be used for making architectural choices in the
design process, so the intent was to achieve power
management on the architectural level, unlike the solution
described in this paper, which provides a framework for
power analysis on application level.

Experimental results obtained in [11]–[13] have shown
that current consumption of the entire instruction set, for
selected target platforms, is quite uniform, so energy
consumption models were adjusted according to that
observation. However, instruction power profiling
performed on the DSP platform presented in this paper has
shown that current consumption varies from 120 µA for the
NOP instruction, up to 387.5 µA for the LOAD X[addr], X0
instruction, which lead us to the conclusion that models
represented in [11]–[13] are not applicable to this platform.

Estimation model presented by [14] excluded detailed
inter-instruction cost estimations and, instead of that, used a
Hamming distance and weight of the instructions, since the
results have shown that inter-instruction energy cost
measured on that target platform is around 5 %. We have
used a different approach, because, according to our
measurements, inter-instruction effect has a much higher
influence on the consumption for this target platform, in
some cases over 40 % of the instruction’s base energy cost
[2].

None of the abovementioned models include energy
consumption estimation of a multicore system, whereas the
estimation model presented here does. Multicore energy
consumption estimation model provided by [15] calculates
consumption based on cores’ frequency and utilization,
unlike the solution presented here, which evaluates each
core average power based on instruction execution at the
current cycle and the cycle before that one. Also, it is worth
noticing that this estimation model considers heterogeneous
multicore platform, unlike the model presented in [15].

Since this paper represents an enhanced and extended
version of the solution presented in [6], many significant
improvements have been made on the existing platform. In
the previous version of energy consumption estimation, only
core activity and average DSP consumption per core were
used as parameters in power analysis, whereas the enhanced
version, presented in this paper, calculates power at
instruction level, whilst achieving finer granulation and
significantly higher accuracy.

III. ENERGY CONSUMPTION ESTIMATION MODEL

The embedded platform, for which this model has been

derived, was developed to enhance performance in a hearing
aid. Nevertheless, the model is universal and applicable to
any embedded platform. The DSP platform that was used
for this research contains five heterogeneous cores: two
DSPs used mostly for numerical accelerations and three
general purpose DSP cores. One general purpose DSP is a
micro-controller which synchronizes and controls the whole
system. All cores were developed with emphasis on an ultra-
low power design. Bearing in mind that one of the most
important characteristics of hearing aids, and all other
embedded devices that depend on batteries, is autonomy, it
could be concluded that any energy savings will enhance
product competitiveness. Therefore, besides the energy
savings that were achieved in hardware design, it should
also be considered what energy savings could be
accomplished in a software solution.

Besides DSPs, the target platform also contains several
other peripherals, such as: analog, system, input/output,
local processor unit, utility, and wireless. In order to obtain
an accurate energy consumption model, besides the
instruction-level energy profiling, it is necessary to
empirically measure the average energy consumption of all
counted peripherals, and to incorporate those values into the
estimation model, unlike the estimation models presented in
[2], [9], [10], [14].

The main issue that inspired the research was: is it
possible to conduct software energy efficiency profiling
depending on various input signals, and to provide an
answer to the question how much time will pass until the
hearing aid battery is discharged when processing a specific
input signal.

Fig. 1. Trend of energy consumption at various input loads.

Figure 1 depicts software energy consumption profiling at
various input loads. The abscissa represents discrete time in
resolution of cycles and instructions being executed within
it. Execution flow, as well as cores and peripherals activity,
have been obtained using virtual platform, profiler tool [16],
and debug information.

The ordinate shows average power consumption, which is
calculated based on empirical data. With this kind of
representation, critical points, power consumption peaks, are
easy to catch, as well as parts of the source code that
consume the greatest amount of energy.

For example, it was measured that average power
consumption during FFT processing was Ps = 3.4 mW, at
DSP platform voltage Up = 1.25 V, and battery capacity Kb

= 310 mAh. Then, evaluation of battery life time – Tb can be
calculated with the following equations:

387 5 [mWh],b p bE = U K  = . (1)

113 97[h].b b sT = E / P  = . (2)
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This implies that the battery will run out of charge after
113.97 hours of continuous FFT processing.

Further on, a mathematical model, which has been
developed in order to facilitate this kind of analysis, is
presented.

It is obvious from (2) that the only parameter that should
be analysed furthermore is average power consumption Ps.
This parameter can be calculated as an arithmetic mean of
cycle’s average power consumptions Pc

1
( )

0

1 .
n-

s c k
k

P = P
n 
 (3)

In (3), n represents the number of executed cycles, and
Pc(k) denotes the average power consumption of the k-th
cycle. The average power consumption of a cycle remains to
be defined
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where Pdc is power consumption of the static component,
and it is not dependent on the contents of a program
memory, but represents overall power consumption of a
DSP platform, whilst all cores and peripherals are in the idle
state. Pf(l) denotes average power consumption of the l-th
peripheral. Pb(m) stands for base power cost [2], [17] of the
m-th core instruction. Po(m) denotes power consumption
overhead of the m-th core instruction, which is generated by
the inter-instruction effect [2], [18], [14] caused by a circuit
state overhead [19]. Inter-instruction effect appears only
when two different adjacent instructions are executed
successively; therefore it is worth noticing that Po(m) element
participates in the calculus only in the case when instruction
from previous cycle differs from the current one. Stalls and
cache misses that were included into the energy
consumption model presented in [19] are omitted from this
model, since the DSP platform presented here does not
support cache and stalls by hardware design. Parameter p
from the first sum denotes the number of active peripherals.
N from the second sum represents the number of active
cores. It should be noticed that power consumption of cores
is considered as the sum of power consumptions of each
individual core, and the effect presented in [20], power
consumption overhead due to the core’s shared resources,
was not included in this model, since hardware design does
not support such mechanism.

By combining (3) and (4), the following derivation is
performed:
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where pk and Nk denote the number of active peripherals and
the number of active cores, respectively, at the k-th cycle.

IV. PROPOSED MEASUREMENT METHODOLOGY

From (6), we identified four different aspects of power
consumption that should be measured: DSP platform static
component – Pdc, power consumption of peripherals – Pf,
instruction’s base power cost – Pb, and instruction’s
overhead power cost – Po. All measurements were
performed using Fluke True-RMS Industrial Logging
Multimeter.

A. DSP Platform Static Component
Static component has been obtained by measuring the

instantaneous current, drawn by the DSP platform, whilst
DSP cores and peripherals run in idle state

  716µA 1.25V 0 [mW],.895 dc m pP I U     (7)

where Im denotes measured current, and Up is DSP platform
voltage.

B. Peripheral’s Power Cost
Average power consumption of a peripheral is measured

in the similar manner as the static component, but the crucial
difference is configuration of the DSP platform, as well as
the test image that should be created for each individual
peripheral. Then, the current drawn by the peripheral (If) can
be measured as the difference between overall current
consumption (Im) and the sum of the static component (Idc)
and the current drawn by the core (Icore) before the
peripheral has received the clock:

  ( ),f m dc coreI I I I   (8)

  ,f f pP I U  (9)

where Pf denotes peripheral’s average power consumption.

C. Base Power Cost
Instructions base costs has been determined using the

well-established methodologies, described in [2], [21]. The
methodology is intuitive. The base current, drawn by the
instruction execution, could be measured when target
instruction is executed simultaneously. That could be
achieved by executing target instruction in an infinite loop.
In order to minimize the influence of a jump instruction
from the loop, it is recommended to put a number of
instances of target instruction in the loop.

Figure 2 represents the source code that has been used for
measurement of the instruction’s SUB x1, B0, B0 base cost.
This method differs from the one presented in [17], where
the loop contains only one instance of the target instruction
and the number of instances of reference instruction (NOP)

 
 ( )

837µA 710µA 1.25V 0.159 [mW].
b m dc pP I I U   

    (10)

Equation (10) represents evaluation of the base cost. The
difference between the measured current and the static
component represents the base current. Values in (10) were
obtained after launching the source code from Fig. 2. Since
the processor used in this research is a three-stage pipelined
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DSP, then the base cost obtained in (10) is related to all
three stages of execution: fetch, decode, and execute.

Fig. 2. The source code for measurement of the base cost of instruction
SUB x1, B0, B0.

TABLE I. BASE COSTS OF INSTRUCTIONS
Instruction Idc [µA] Im [µA] Ib [µA] Pb [µW]

LOAD x[256], x0 710 1003 293 366.25
ADD y0, 1, y0 710 844 134 167.5
SUB x1, b0, b0 710 837 127 158.75

ABS b0, b0 710 836 126 157.5
MOVE x1, t1 710 838 128 160

LSHL x1, x0, x1 ## NOP 710 911 201 251.25
MPY y0, y0, a0 ## NOP 710 913.5 203.5 254.375

MSUB x1, y1, a0 ## NOP 710 913 203 253.75
STORE x0,
x[0x2000] 709 911 202 252.5

STORE x0, x[256] 709 1014 305 381.25
NOP 710 830 120 150

Table I contains base costs of eleven different
instructions, measured using the described methodology.
The quantum of energy (Eb) that is consumed during an
instruction execution can be calculated using the following
equation

60.159mW 1 1/10 s 0.159 [nWs],
b b cE P N T   

    (11)

where N denotes the number of cycles required for
instruction execution, and Tc represents cycle time (f =
10 MHz). So, it can be noticed that instruction SUB x1, B0,
B0 consumes a minimum of 0.159 nWs every time it is
executed.

D. Overhead Power Cost
Overhead cost occurs as a consequence of execution of

two different adjacent instructions. This is caused by
switching activity in the circuit, which is also known as a
circuit state effect [1], [2], [18], [19], [21]. There are several
approaches in modelling an inter-instructions energy effect,
and some of those are explained in [1] in detail.
Methodology for measurement of instructions overhead
costs proposed in [2], [18], [19], [21] requires measurements
between all individual instructions. Taking into account that
target DSP, considered here, contains a set of approximately
one hundred instructions, leads us to the conclusion that a
huge amount of tests and measurements (12) needs to be
conducted to assure overarching information about inter-

instruction costs

 
! 100! 4950.

! 2! 98!
n nK
r r n r
 
       

(12)

In (12), n denotes the size of instruction’s set, and r is the
number of selections.

Fig. 3. Source code for measurement of overhead cost of instruction SUB
x1, B0, B0.

This observation affected the research to find appropriate
approximation that will reduce the amount of tests required
for measurements of overhead costs. The main idea was to
find one instruction that will serve as a reference point for
measurements. The candidate that stood out immediately
was a NOP instruction. The new paradigm has been
adopted: when the NOP instruction is executed with the
target instruction, the whole inter-instruction cost could be
assigned to the target instruction. The following derivation
of (6) explains this approximation:

1 1
( ) ( ) ( )

0 0

1

0
(1 ,)

k kp N
dc f l b m o m

l m

n
s

k
P PP

n
P P

 

 





 
   


  


   (13)

 
1

( ) ( )
0

1 ,
n

s
k

dc b k o kP P P P
n




   (14)

 
 

( ) ( )

( ) ( ) ( ) ( )

    / 2

/ 2,     ,

s dc b nop o nop

b inst o inst o nop o inst

P P P P

P P P P

   

   (15)

 ( ) ( ) ( )    2 / 2,s dc b nop b inst o instP P P P P     (16)

 ( ) ( ) ( )(     / 2),o inst s dc b nop b instP P P P P    (17)

 
( )

( ) ( )(     / 2),

p o inst

p s p dc p b nop b inst

U I

U I U I U I I

 

      (18)

 ( ) ( ) ( )(     / 2),o inst s dc b nop b instI I I I I    (19)

where Io(inst) denotes the current consumed by the circuit
state effect that can be assigned to a target instruction, Is is
an overall current measured during the experiment, Idc

current of the static component, Ib(nop) represents the base
cost of NOP
instruction, and Ib(inst) denotes the base cost of the target
instruction.

Figure 3 represents the source code that has been used for
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measurement of the instruction’s (SUB x1, B0, B0) overhead
cost. Derivation presented in (13) and (14) has been made
based on the facts that only one core was launching the
source code from Figure 3 and peripherals were in idle state
during the experiment. Approximation based on the adopted
paradigm is introduced in (15).

TABLE II. OVERHEAD COSTS OF INSTRUCTIONS.

Instruction ΔI=Is-Idc
[µA]

Io(inst)
[µA] Overhead %

LOAD X[256], X0 301 94.5 32.25 %
ADD y0, 1, y0 175 48 35.82 %
SUB x1, b0, b0 145 21.5 16.93 %

ABS b0, b0 141 18 14.29 %
MOVE x1, t1 141 17 13.28 %

LSHL X1, X0, X1 ## NOP 252 91.5 45.52 %
MPY X0, Y0, A0 ## NOP 229 67.25 33.05 %

MSUB X1, Y1, A0 ## NOP 236 74.5 36.70 %
STORE x0, x[0x2000] 258 97 48.02 %

STORE X0, X[256] 306 93.5 30.66 %
GOTO 271 115 95.83 %

Figure 4 depicts the trend of current consumption with
and without overhead cost. The trend is obtained from
Table I (lower line), base cost, and Table II (upper line),
overhead cost.

Fig. 4. Trend of current consumption, with and without overhead cost.

The described approximation decreases the required set of
measurements from O(N2) space to O(N) space, where N
denotes the size of instructions set, which implies great
savings in time and resources.

V. EXPERIMENTAL RESULTS AND VALIDATION

Validation of the proposed model has been performed
using two benchmarks, as in [14]. In Benchmark 1, the
current drawn by the processor was measured while
executing separate blocks of instructions from Table I.,
where each individual block contains only instructions of
the same type, thousand instances, in order to cancel inter-
instruction effect. Also, peripherals were in idle state.
Bearing that in mind, the fact that only one core was running
during the experiment, and the value calculated in (7), (6)
derives into
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During the experiment, the measured current was Im =
902 µA, which implies

m 902μA 1.25V 1127.5 [μW].m pP I U     (21)

From (20) and (21) accuracy ensues
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Benchmark 2 has been performed on an interleaved set of
instructions from Table III.

In this experiment, the same as in the first one,
peripherals were in idle state and only one core was active,
but since instructions were interleaved, inter-instructions
influence was not ignored, so (6) that derives into
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The current that was measured during the experiment was
Im = 970 µA, which implies

m 970μA 1.25V 1212.5 [μW],m pP I U     (24)

From the formula used in (22), and the results obtained in
(23) and (24), it can be calculated that the accuracy for the
interleaved set of instructions is 99.96 %.

Bearing in mind the accuracy that has been achieved, it
seems that selection of the NOP instruction was a good
choice at this point of the research. If estimation accuracy
decreases when measurements extend to the entire
instruction set, then some alternatives should be considered
as reference points. These results confirm the proposed
estimation model and measurement methodology, but it
should be noticed that new benchmarks should be developed
that will aim to challenge the proposed model against
diverse applications.

TABLE III. BASE COSTS + OVERHEADS OF INSTRUCTIONS

Instruction
Base cost +
Overhead

[µA]

Base cost + Overhead
(Pb+Po)

[µW]
LOAD x[256], x0 387.5 484.375
SUB x1, b0, b0 148.5 185.625

ABS b0, b0 144 180
MOVE x1, t1 145 181.25

LSHL x1, x0, x1 ## NOP 292.5 365.625
MPY x0, y0, a0 ## NOP 270.75 338.4375

MSUB x1, x1, a0 ## NOP 277.5 346.875
STORE x0, x[0x2000] 299 373.75

STORE x0, x[256] 398.5 498.125
NOP 120 150

GOTO 307 383.75

The results certainly seem promising and they establish a
solid ground for further research.

VI. CONCLUSIONS

Estimation of energy consumption may have a significant
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impact on the final version of the software solution, as it
would provide an accessible tool for power analysis of the
source code. This observation will be further discussed in
impending research, when measurements extend to entire
instructions set. At this point, we are not sure about overall
impact on firmware development, since this is in early
stages of the research, but that is certainly one of our goals.
The connection between energy consumption and the source
code has been accomplished at the instructional level, so
each cycle would be tagged with the amount of energy that
it consumes and instructions executed within it. This has
been achieved using the proposed mathematical model (4),
measurement methodology and the profiler tool [16]. A
vivid representation of the energy consumed by the source
code (Fig. 1.) may provide a straightforward input for
reorganisation of the source code at the critical points,
power consumption peaks, in order to achieve energy
savings. Also, instructions’ power profiles will provide an
insight into the energy costs, which may influence
instructions selection during application development, since
the proposed measurement methodology and estimation
model provide a high level of accuracy (over 99 %).

In Benchmark 1, measurements were conducted whilst
executing separate blocks of instructions, and it was
measured that 1127.5 µW was consumed during the
experiment. Also, power consumption estimation was
calculated using Table I and mathematical model (20), and it
amounts to 1127.8 µW (20). That implies that estimation
accuracy in Benchmark 1 was 99.97 % (22). In Benchmark
2, measurements were performed during execution of
interleaved set of instructions, and it was measured that this
setup consumes 1212.5 µW. Using the estimation model
(23) and Table III, power consumption estimation value was
calculated to be 1212.1 µW. These numbers lead us to the
conclusion that the achieved estimation accuracy in
Benchmark 2 was 99.96 %. It should be emphasized that the
achieved accuracy was calculated for 10 % of the entire
instruction set. Future work could be focused on expansion
of measurements to the entire instruction set. Afterwards,
estimation should be challenged against various applications
in order to obtain more reliable data about accuracy. Also,
application level optimization, presented in here, could be
extended to a compiler level power management. The
obtained empirical data could be used as an input during
compiler’s instructions selection and scheduling, similarly to
what was proposed in [21], [22].

The proposed model, as well as the measurement
methodology, are rather general and it seems that they could
be applied to other embedded processors.
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