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1Abstract—Vehicle detection and classification is an 

important part of an intelligent transportation surveillance 

system. Although car detection is a trivial task for deep 

learning models, studies have shown that when vehicles are 

visible from different angles, more research is relevant for 

brand classification. Furthermore, each year, more than 30 

new car models are released to the United States market alone, 

implying that the model needs to be updated with new classes, 

and the task becomes more complex over time. As a result, a 

transfer learning approach has been investigated that allows 

the retraining of a model with a small amount of data. This 

study proposes an efficient solution to develop an updatable 

local vehicle brand monitoring system. The proposed 

framework includes the dataset preparation, object detection, 

and a view-independent make classification model that has 

been tested using two efficient deep learning architectures, 

EfficientNetV2 and MobileNetV2. The model was trained on 

the dominant car brands in Lithuania and achieved 81.39 % 

accuracy in classifying 19 classes, using 400 to 500 images per 

class. 

 

 Index Terms—Image classification; Machine learning; 

Vehicle detection. 

I. INTRODUCTION 

The ability to recognize a vehicle from a video can be 

very helpful, from traffic monitoring to following the 

fleeing driver from a crime scene. So far, Automatic License 

Plate Recognition systems have been mostly utilized to 

identify the vehicle under investigation. However, if the 

criminal is driving fast and the recorded license plates are of 

poor quality, the main tool for locating the suspect is 

monitoring a car with certain attributes via city cameras and 

manual searches by officers. Nonetheless, suspects can swap 

license plates, or witnesses can write down only part of the 

license plate or recall only a few facts about the car, such as 

color, make, or model. As a result, an automatic vehicle 

characteristics recognition system becomes critical in 

assisting officers and improving the intelligent 

transportation system [1]. 

The potential of classifying key characteristics of a 
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vehicle is constantly being examined due to the increasing 

use and research of convolutional neural networks (CNNs) 

and the development of the graphics processing unit. CNN 

has already been used to detect and track cars or to count the 

number of cars passing by on the road [2], [3]. However, 

due to the most severe CNN constraint of requiring a large 

dataset, the transfer learning approach [4] was designed to 

tackle limited data resources. Deep learning technology is 

already helping individuals to reduce eye tracking on 

multiple screens, so it can also be used to determine the 

attributes of a car, thus helping automate toll collection, 

intelligent parking systems [5] or law enforcement [6]. 

Filtering video segments by specific car attributes can be 

simplified using a vehicle classification model. 

The task of identifying vehicle characteristics has unique 

challenges and problems. The first is the impact of weather, 

time of day, and varied lighting exposures, all of which can 

make the model difficult to perform, as the classes are very 

similar [1]. The lack of open-source datasets that include a 

range of commonly used vehicles, viewing angles, diverse 

image quality, and data with more than several images per 

class is another barrier [7]–[9]. And the third challenge is 

that newer vehicle models are released on a regular basis, 

requiring the deep learning model to be retrained with even 

small amounts of data. According to statistics, 42 new 

models were created in the United States alone in 2020, 34 

in 2021, and 62 models are expected in 2025 [10], 

demonstrating an upward trend in car manufacturing. To 

address the last two challenges, a country-specific dataset is 

collected and vehicle brand classification is explored using a 

transfer learning technique that does not require a large 

dataset for training, making it appropriate for constantly 

upgrading systems. 

The aim of this research is to create a retrainable vehicle 

detection and classification framework that can accurately 

classify vehicle images from various viewpoints to simulate 

the effect of city cameras. To present the most popular cars 

on the roads, the dataset of vehicle brands is taken from the 

Lithuanian car marketplace website. This research uses 

architectures designed for lower computing power, 
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MobileNetV2 and EfficientNetV2, to ensure that the 

solution can be implemented in real time and retrained with 

new vehicle models. The pre-trained feature vectors of 

defined architectures are fine-tuned, and the study examines 

multiple combinations of dense classification layers to 

suggest a novel architectural design. Finally, the 

generalization abilities of the model are evaluated by 

comparing the classification performance of various 

distribution datasets, and examples of the final proposed 

system are presented. At the end of the study, the findings 

are discussed, and conclusions and recommendations for 

further research are presented. 

II. COMPUTER VISION LITERATURE REVIEW 

Convolutional Neural Networks are widely used in 

computer vision tasks to classify objects such as cars, 

pedestrians, and more [11]. To learn how to replicate human 

intellect, this supervised machine learning technique 

requires labeled data [12]. The basic CNN consists of 

convolutional, polling, and fully connected layers that 

classify the final classes, where the convolutional layer 

extracts low- and high-level visual features using a weight-

sharing mechanism [11].  

A state-of-the-art CNN model named “You Only Look 

Once” (YOLO) demonstrated exceptional performance in 

real-time image processing due to its high performance and 

accuracy [13]. The third version of the model is the latest 

and includes 53 convolutional layers and 23 residual layers. 

The YOLOv3 model has already been pre-trained on the 

COCO dataset, which covers 80 object categories, including 

the means of transportation such as bicycles, cars, buses, 

trains, trucks, and so on. Furthermore, it has been used 

successfully in vehicle detection applications and has 

improved recognition capabilities for tiny objects [13]. 

A. Transfer Learning 

CNNs, on the other hand, have the disadvantage of being 

strongly reliant on large amounts of data to avoid overfitting 

[14] and hence requiring massive computer resources [15]. 

As a result, a machine learning technique called “transfer 

learning” [4] was established, in which a previously trained 

model with stored weights is used to train a new model with 

a smaller similar dataset. Because pre-trained models have 

already learned to recognize edges, colors, and patterns, the 

weights of the feature extraction network can be frozen to 

convey this information [16]. Finally, the last layers can be 

used to obtain additional detailed information about the 

classified classes [15]. Another transfer learning method is 

fine-tuning, which involves retraining the layers with 

initialized pre-trained model weights rather than freezing 

them [17]. In terms of time and computational resources, 

freezing layers is the most effective strategy, whereas 

training from scratch is the most expensive [18]. 

B. Classification of Vehicle Attributes 

Vehicle classification is one of the most interesting tasks 

in an intelligent transportation system. It has been studied 

using a logo-based technique, in which the vehicle logo is 

first localized and then classification is performed [12]. 

Classification of car brands and models based on front 

images reaches accuracies of 98.22 % (49 classes) [5], 

98.7 % (107 classes) [19], 97.89 % (35 classes) [1], and 

96.33 % (766 classes) [20]. However, the region of interest 

is usually strongly cropped to remove the background and 

requires a certain angle image; this strategy, for example, is 

suited for parking lot cameras. There have been successful 

experiments to determine the type of vehicle, such as a car, 

van, truck, or another, with an accuracy of up to 99.68 % 

using a modified pre-trained ResNet-152 model [3] or 

76.28 % using ResNet34 [4]. Another example shows that 

the AlexNet architecture can be used to produce a perfect 

classifier to assess the position of a vehicle [16]. This type 

of study can assist in the development of multiple models 

for different viewpoints to improve the overall performance 

of model recognition. The classification of vehicle brands 

using the logo has been of interest for many years, but the 

challenge of detecting cars that do not rely on this 

information only has remained largely unsolved [21]. 

Another type of vehicle classification is the appearance-

based classification, which uses elements such as lights, 

windows, and the vehicle body to classify the vehicle [12]. 

To date, the most used car data from different viewpoints 

are the Stanford car dataset, which consists of 196 model 

classes with 24 to 68 images in the training dataset and the 

same amount of test data as it has been split 50/50 ratio [6], 

[15], [16], [18]. The publications that use these data do not 

take into consideration the impact of unbalanced data, 

although the sample size of the test data is almost three 

times smaller for certain classes. However, using this 

dataset, the fully trained GoogLeNet architecture [9] and the 

MobileNet transfer learning model [22] had the highest 

accuracies of the classification of the make and model, at 

80 % and 78.27 %, respectively. In 2020, a unique study 

was carried out to actualize the classification of vehicle 

models using real surveillance cameras, and the model 

achieved an accuracy of 62.09 % in real environmental 

settings [23]. This, together with the increasing number of 

vehicles and city cameras [7], shows that vehicle 

classification is relevant and more research is needed to 

make it adaptive to real-world scenarios. 

C. EfficientNet and MobileNet Architectures 

This study selected two of the most efficient classification 

architectures. The first architecture is the lightweight 

MobileNetV2 [24], which, according to the reviewed 

articles, achieves one of the highest accuracies. It employs a 

slow downsampling strategy and more layers have large 

feature maps, resulting in detail preservation [25]. Another 

selected architecture is EfficientNetV2, a newer architecture 

network that uses a compound scaling approach to 

uniformly scale and balance the depth, width, and resolution 

of the network to improve accuracy and efficiency [26]. The 

MobileNetV2 architecture is pre-trained using the ImageNet 

dataset, which contains 1000 classes covering high-level 

categories such as animals and vehicles [27]. Meanwhile, 

EfficientNetV2 is pre-trained on ImageNet-21k, which has 

21,841 classes, and is simply a larger version of ImageNet 

[27]. The pre-training on ImageNet-21k is claimed to 

provide better performance than the use of ImageNet1k 

[28]. 
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III. PROPOSED VEHICLE MAKE DETECTION SYSTEM 

The suggested system architecture is illustrated in Fig. 1. 

Here, the preparation phase involves the preparation of data 

and the training of the classifier, while the usage phase 

involves the adaptability of the model to the use of external 

applications containing traffic camera data. The final 

approach can locate the car in the frame, classify the make 

for each bounding box, and be leveraged for rendering or 

other purposes. 

 
Fig. 1.  The architecture of the proposed vehicle detection system. 

Each of the three phases is described in further detail: 

 Data Preparation. The source material contains images 

of vehicles for sale posted on the Internet. These images 

contain a lot of noise, such as the gearbox, steering 

wheel, engine, car interior, etc. The pre-trained YOLOv3 

state-of-the-art detection model was utilized as an auto 

labeler to filter out unnecessary data and crop the region 

of interest. To ensure that no noisy data was left out, the 

photographs were reviewed using the designed interface 

to exclude unrepresentable images. There is also a 

problem with data-class imbalance; thus, only classes 

with at least 400 images are taken, and those with more 

than 500 images are truncated. Image pre-processing 

includes resizing, converting to grayscale, and 

normalizing such that the image input matches the pre-

trained data. Subsequently, data augmentation was used 

to create a more diversified representation of the vehicle’s 

sides and dimensions. The last step includes data 

separation training and testing. 

 Classification Model. The classification task is the 

central objective of the study. The most efficient 

architectures of the pre-trained models, MobileNetV2 and 

EfficientNetV2, were investigated by fine-tuning their 

feature vectors and using different dense classifiers. With 

a limited dataset, these models could easily be retrained. 

See the subsection “Image Classification Using Various 

Classifiers” for further information. 

 Car Detection and Make Classification. The YOLOv3 

model, which has previously been used for vehicle image 

filtering, is combined with the best classifier. This can be 

used for vehicle monitoring via video cameras. 

Image Classification Using Various Classifiers. The 

suggested classification architecture has two primary 

components: reusing a previously trained CNN model and 

adding a new classifier. For initial feature extraction, 

selected model architectures with pre-trained weights are 

used. The MobileNetV2 architecture was trained using a 

considerably larger and more general ImageNet dataset to 

obtain the vector of image features. With a total of 2257984 

parameters, the vector output size is 1280. Meanwhile, the 

feature vector of the EfficientNetV2 neural network is 

trained on the ImageNet-21k dataset, resulting in a vector 

output size of 1536 and nearly 6 times more parameters: 

12930622. Although the learning time increases, the feature 

vector is fine-tuned with new classifier layers to obtain 

greater accuracy. The classifier receives the resulting dense 

1-D tensor feature vector output and learns to categorize the 

input image according to the brands of the vehicle. Figure 2 

illustrates the classification architecture by reusing pre-

trained feature vectors and adding new classifier layers.

 

 
Fig. 2.  Image classification using fine-tuning. 

When the image feature vector is extracted using a grid 

with pre-trained weights rather than starting from a random 

weight initialization, then the generated classifier is based 

on a fully connected grid. In this way, the knowledge 

already acquired can be re-used instead of training from 

scratch. The classifier can be as simple as a dense layer with 

a Softmax activation function to obtain the probability of 

each class. This classification is called the “baseline” or 

“version 1”. Different classifier versions are tested for 

greater accuracy. The 2nd version adds weight adjustment L1 
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and L2 to reduce the number of features. A batch 

normalization layer is added in the 3rd version to allow the 

network to train faster. Dropout at a rate of 0.5 is utilized in 

the 4th version to avoid overfitting and learn more robust 

features. And different combinations of dense layers are 

then introduced with the rectified linear block activation 

function. All classifier architectures are presented in Fig. 3. 

 

 

 

 

 

 

 

 
Fig. 3.  Classifier versions 1-8. Here, newly added layers are colored in 

gray, and n denotes the number of classes. 

IV. IMPLEMENTATION RESULTS 

This section describes the steps in building a vehicle 

monitoring system. The best classification architecture, 

which outperforms prior studies, is proposed. A detailed 

assessment of the classifier is provided, examining each 

class performance and providing some visual explanations 

using gradient-weighted class activation mapping. Finally, 

the generalizability of the model is investigated. 

A. Data Description 

The raw data for initial model training collected from a 

car sales website. The data also include pictures that are not 

required for the model, such as the interior of the vehicle, 

the wheels, and the engine. Additionally, each car has a 

.json file with information about the ID, make/model, body 

type, color, date of manufacture, and more. The images, 

which are all in .jpg format, also vary in size and quality. 

Examples of original photos of one car are shown in Fig. 4.  

   

   
Fig. 4.  Raw images. 

B. Auto Labeler 

A pre-trained YOLOv3 model on the COCO dataset with 

80 classes and an input image size of 416 was used to detect 

image files that do not show an exterior of the car. This 

model was designed to search for classes such as car, bus, or 

truck with a preset intersection over a union threshold of 0.5 

and a score threshold of 0.89. If the area of the bounding 

box was greater than 33 % of the image, it was considered a 

vehicle and cropped. A sample result is shown in Fig. 5. 

  

  
Fig. 5.  Cropped images around the region of interest. 

C. Validation Interface 

Vehicle search and image cropping operations using the 

YOLOv3 model did not yield perfect results. The data 

contained images of the car with the doors open or very 

close-up shots that had to be manually removed. To speed 

up manual work, a graphical user interface has been 

developed using the Tkinter Python library. Using the 

interface, it is possible to view images and delete poorly 

selected photos at the touch of a button. Examples of 

acceptable and unacceptable images are shown in Fig. 6. 
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Fig. 6.  Simplified validation interface. Here, the red “Delete” button 

deletes the image, the green “Next” button proceeds to the next image, and 

the white “Undo” button returns the user back to the previous screen. 

D. Image Pre-Processing 

The images have been resized to 224×224 dimensions to 

represent the lower quality of the real-life image and to 

speed up model training. Each image is converted from 

RGB to grayscale to remove color information that is not a 

decisive factor in classifying a car brand. However, the pre-

trained model uses 3 color channels as input, so the gray 

channel is repeated 3 times. Finally, the data are normalized 

from 0 to 1. The final dense 4-D-shaped tensor is of the 

following shape [batch size, height, width, color channels]. 

Examples of pre-processed images are shown in Fig. 7. 

 
Fig. 7.  Pre-processed images. 

According to the study in [29], 200 or more images per 

class are preferred to achieve the best accuracy using the 

transfer learning strategy. Therefore, only vehicle brands 

with more than 400 images have been included. And excess 

data with more than 500 photos per class were not included 

to avoid difficulties with imbalanced classes. The class 

labels were one hot encoded. Finally, a total of 9451 images 

were divided by 80/20 ratio for training and testing, 

respectively. There were a total of 7560 train and 1891 test 

photos collected and 19 classes remained: Audi, BMW, 

Citroen, Ford, Honda, Hyundai, Kia, Lexus, Mazda, 

Mercedes-Benz, Mitsubishi, Nissan, Opel, Peugeot, Renault, 

Skoda, Subaru, Volkswagen, Volvo. 

E. Data Augmentation 

The data augmentation technique artificially creates 

modified images and is used to reduce overfitting [29]. The 

more data available, the better models can be developed 

[14]. Two different augmentation techniques were used to 

depict reality. The first flips the horizontal axis to make both 

sides of the car visible. The second method uses a random 

30 % scaling to make the model more robust to small 

changes in object size. Figure 8 illustrates both 

augmentations. 

 
Fig. 8.  Zooming and horizontal flipping augmentation. 

Data augmentation is used for the training dataset only, so 

the size of the test data remains the same (1891), but the 

training data increases from 7560 to 11560, about 53 % of 

the original data were augmented. As a result, 65.4 % of the 

training data are real, while 34.6 % are artificially 

augmented. Figure 9 shows the number of images by car 

brand. 

 
(a) 

 
(b) 

Fig. 9.  Number of images in train and test datasets: (a) Number of cars in 

training dataset; (b) Number of cars in testing dataset. 

F. Training Environment 

The model is built using cloud-based Google Colab 

environment. The code is written in the Python 

programming language using the TensorFlow GPU library. 

The models are trained on Ubuntu 18.04.5 LTS using 

NVIDIA-SMI 495.44 with CUDA version 11.2. More 

information about the experimental setup can be found in 

Table I. 

TABLE I. EXPERIMENTAL SETTINGS. 

Attribute Configuration Information 

Operating system (OS) 
Linux 5.4.144 with Ubuntu 

18.04.5 LTS 

CPU 
Intel(R) Xeon(R) CPU @ 

2.30 GHz 

GPU NVIDIA-SMI 495.44 

Driver version 460.32.03 

CuDNN/CUDA 8.0.5/11.2 

Python version 3.7.12 

Framework Tensorflow 2.7.0 

 

Furthermore, the initially established hyperparameters 

used to regulate learning processes are presented in Table II. 
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TABLE II. EXPERIMENTAL SETTINGS. 

Hyperparameter Value 

Number of epochs 200 

Early stopping epochs 15 

Batch size 16 

Optimizer Adam 

Learning rate 0.0001 

 

The maximum number of training iterations, called 

“epochs” is 200. Since too many or too few can lead to 

overfitting or underfitting, a monitoring system was 

introduced with an early stop feature such that if the 

validation loss did not improve in the last 15 epochs, the 

training would be terminated. The categorical cross-entropy 

loss function was used for model training as an objective 

function to be minimized. The test loss measures the 

distance between the predicted probability distribution of 

belonging to each class and the target values. To avoid 

memory overflow, the batch size is set to 16 to feed the 

model with only a fraction of the training data at a time. 

Adam, an optimizer, with a learning rate of 0.0001 was 

selected. 

G. Testing Classifiers Versions Using Pre-Trained 

Models 

Performing classification using the pre-trained models 

MobileNetV2 and EfficientNet, eight classifiers were tested. 

All the classifier structures are defined in Section III. Model 

architectures trained with random weights were also 

evaluated. However, due to small training data, the model 

with random weights did not learn the influential features 

and achieved the highest accuracy of 8.83 % (see Fig. 10). 

This demonstrates the benefits of employing pre-trained 

weights, which have a 12.5 times greater accuracy on 

average than randomly generated weights. The accuracy of 

the test dataset, which estimates the number of times the 

highest probability prediction matches the ground truth 

labels, is shown in Fig. 10 and the model training duration is 

shown in Fig. 11. 

 
Fig. 10.  Comparison of the accuracy of different classifier models and versions. 

 
Fig. 11.  Run-time comparison of different classifier models and versions. 

The EfficientNet-B3 feature vector and the 7th classifier 

had the best accuracy results of 81.39 %, although the 3rd 

classifier was only 0.11 % less accurate. The 7th version 

took 50 minutes to train, while the 3rd took 44 minutes. 

Although both versions are usable, the 7th has been selected. 

The summary of the model with the 7th classifier is shown in 

Fig. 12. 

The layer names, type, output shape, and number of 

weight parameters are all listed in the model summary (see 

Fig. 12). At the bottom of the table is the total number of 

trainable and non-trainable model parameters. The “None” 

output value refers to the batch size. The Keras layer in this 

case is an invoked object for loading a stored model 

EfficientNet-B3 with a trainable parameter equal to “True”. 
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Fig. 12.  Summary of the best sequential classification model (version no. 

7). 

H. Training Performance of the Best Classifier 

The training performance of the EfficientNet-B3 using 

the 7th classifier version is shown in Fig. 13.  

Here, the blue line indicates the training, and the orange 

indicates the validation curve. The accuracy plot shows that 

the model gains high accuracy in the early epochs because 

the pre-trained weights are reused. To avoid overfitting and 

generalization errors, the model was trained for less than 40 

epochs until the loss of validation stopped improving. 

However, because there is a gap between the training and 

validation curves, it indicates a slight overfitting, so 

increasing the dataset may improve the results. Additionally, 

the shape of the training loss curve suggests that a good 

learning pace was chosen. 

 
Fig. 13.  Performance of the classification model training. Model performance history. 

At predicted class probability thresholds ranging from 0 

to 1, the receiver operating characteristic curve (ROC) 

displays the true positive rate on the y-axis versus the false 

positive rate on the x-axis. The true positive rate indicates 

the probability that a defined car label will be predicted 

correctly, and the false positive rate shows how often the 

prediction of a defined car is incorrect. It is usually plotted 

for binary classifier; therefore, the one-vs-all approach is 

employed for multi-class analysis. The ROC curves and the 

area under the curve are given in Fig. 14. Looking at the 

ROC curves, the model is close to a perfect classifier, as the 

curve is above the diagonal line. 

 
Fig. 14.  Receiver operating characteristic curves. 

A contrast between real and predicted values is shown in 

the confusion matrix (see Fig. 15). 

 
Fig. 15.  Normalized confusion matrix. 

Using the confusion matrix, the most confused classes 

could be identified and their interrelationships explored. 
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However, the model predictions are scattered, and the 

diagonal reveals the strongest link between the predictable 

and true classes. 

I. Classifier Visual Explanations Using Grad-CAM 

Deep learning models are known for their excellent 

accuracy, yet their complexity makes them hard to interpret. 

Gradient-weighted class activation mapping (Grad-CAM) is 

an approach to better understanding how the CNN model 

works. Grad-CAM descends to the final convolutional layer 

and uses gradient information to create a rough localization 

map that identifies key discriminating areas in the image for 

class prediction. No fully connected layers are used. The 

class activation mapping is then upscaled to the size of the 

input image so that a heat map could be presented [30]. 

The most important properties that determine the 

classifier decision are marked in red on the heat map (see 

Fig. 16). In the images, where the car is visible from the 

front, the model focuses on the brand symbol, the front 

grille, and a little bit on the headlights. Meanwhile, looking 

at the cars from the side, the model distinguishes the most 

discriminative regions in the middle and upper parts of the 

car (body, hood, and windows). To classify the car from the 

rear view, the model searches for the brand symbol around 

the license plate number. The angle of view is very 

important for good performance of the model. If the car is 

seen from above, the focus is on the body. And when the car 

is at a 45-degree angle, the discriminating region includes a 

side lamp or other car shapes. 

   
(a) 

   
(b) 

   
(c) 

   
(d) 

Fig. 16.  Grad-CAM from different car views: (a) the front, (b) the side, (c) 

the back, and (d) at a 45-degree angle. 

J. Generalization Testing 

It is critical to check how the model works with real-

world data [31]. Even if the accuracy of a test dataset is 

high, this does not guarantee that the model will work well 

in every situation. There may be a generalization gap if the 

model receives previously unseen data, such as different 

backgrounds or different weather conditions. Three different 

scenarios are used to verify the reliability of the model. 

To start, 168 photos from the test dataset are randomly 

selected so that the vehicles are only seen from the side 

when the car brand symbol is not visible. This results in 17 

classes with a 76.19 % accuracy (see Table III). As a 

reminder, the accuracy of the test on all data is 81.39 %, 

which means that the side of the car is about 5 % less 

predictable. 

The second scenario combines both training and testing 

sets from the Stanford cars dataset. Because the data 

contained brands that our model cannot recognize, it was 

filtered out. That left 10 classes, the majority of which were 

formed of Audi and BMW vehicles. A total of 4119 pictures 

were acquired and an accuracy of 66.86 % was obtained. 

In the third scenario, 12 photos are taken from a video 

recorded in the evening with artificial lighting. Six vehicle 

brand classes with two images each were identified with an 

accuracy of 75.0 %. However, due to the tiny dataset, it is 

advised to use more annotated video frames for validation.  

TABLE III. COMPARISON OF CLASSIFICATION PERFORMANCES. 

 
Side Car 

Images 

Stanford Cars 

Dataset 

Video 

Frames 

Test Accuracy 76.19 % 66.86 % 75.0 % 

Test Loss 1.472 2.347 0.928 

Total Images 168 4119 12 

Number of Classes 17 10 6 

 

Generalization testing reveals that additional datasets 

have a mean accuracy of 72.7 %, resulting in 8.7 % poorer 

estimation than the initial test dataset (81.39 %). In general, 

the model can be generalized, but the accuracy will not be 

as good as for the same training distribution. As a result, 

integrating diverse data distributions in the training phase 

can help the model adapt to a broader range of scenarios. 

V. DISCUSSION 

In this paper, the collection of country-based datasets and 

a strategy for vehicle localization and brand classification 

are proposed. The data represent the most frequent cars on 

the Lithuanian market and were balanced to avoid biases. 

The data preparation stage was automated using the 

YOLOv3 car detection model; however, the manual image 

validation stage could be eliminated by optimizing the 

model parameters and making it more conservative. 

Analyzing the classifiers, it was discovered that 

EfficientNetV2 is 7.14 % more accurate than MobileNetV2. 

The 7th version of the classifier, consisting of three dense 

layers, batch normalization, dropout, and L1 and L2 

regularization, improved the most in accuracy. Compared to 

the baseline classifier, the EfficientNetV2 7th classifier 

improved its accuracy by 9 % (from 72.4 % to 81.4 %). This 

was accomplished by classifying 19 automobile 

manufacturer classes using a batch size of 16 and 38 epochs. 

Furthermore, the architecture created outperforms the 

maximum accuracy of the fully trained GoogLeNet 

architecture of 80 % [10], although the performance cannot 

be directly compared due to different datasets and specific 

configurations. 

After generalization tests using the EfficientNetV2 7th 

classifier, the average accuracy of three different datasets 

was 72.7 %. Compared to the accuracy of the original 

dataset testing sample, the accuracy dropped by 8.7 %. The 

reduction in accuracy is not significant, and some 
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fluctuation is expected. As observed from the results of the 

Grad-CAM method, the model is trained to recognize the 

brand of the car by the location of the logo, and if it is not 

found, the car body, hood, or windows become an essential 

predictor. On the other hand, mixing various data into a 

training dataset can help strengthen model generalization 

abilities. 

The following are suggestions for future improvements:  

 More innovative augmentation techniques might be 

proposed to increase generalization performance in 

diverse weather and lighting settings. For example, 

artificially manipulating photos to make them appear as 

though they were taken at night, with a darker 

background and light reflections on the car. In addition, it 

would be useful to add more data from different sources, 

representing different nature of images, diverse quality, 

viewpoints, and so on. As background clutter reduces 

model performance [12], removing it improves vehicle 

classification results [1]. By changing the eliminated 

background with various representations of road pictures, 

this technique might be utilized in augmentation. 

 As one study was able to classify the position of a car 

with 100 % accuracy [16], it could be re-used effectively 

to classify cars from different angles. The suggestion 

would be to first classify the visible position of the car 

and then, depending on the results, classify the features of 

the car using several trained models. As a result, the 

learnt parameters of the model would be unique for each 

given viewpoint, although it requires labeled data on the 

viewpoint of the vehicle. 

 The task could also be expanded to include other 

vehicle attributes, such as vehicle type, make, model, or 

color, so that the vehicle can be precisely identified. It 

would also be beneficial to test the model using video 

data. 

VI. CONCLUSIONS 

In this paper, a vehicle detection and classification system 

was suggested and implemented, which was found to be 

able to classify common local vehicle brands regardless of 

the viewable angle. This is especially relevant as smart city 

systems and the use of security and traffic monitoring 

cameras become more widespread. To represent the 

country’s most popular car manufacturers, static images 

from the Lithuanian car sales website were used. However, 

this step of data collection has also become a barrier in the 

system, as it requires manual validation, which should be 

replaced by an automated and more efficient data labeling 

solution. Effective deep learning architectures have been 

investigated to make the model easier to use in real time and 

to incorporate new car classes as production grows. The 

proposed EfficientNetV2 architecture adjustment improves 

the performance of the original classifier by 9 % and 

achieves an acceptable classification score of 81.4 %. 

However, to adjust the model to real-world conditions, data 

from the environment in which it will be used should be 

incorporated into the training. The findings imply that the 

trained model can be used for urban vehicle monitoring, and 

various improvements are proposed for future research. 
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