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1Abstract—This paper presents one possible application of 

generalized quasi-orthogonal functional networks in the 

sensitivity analysis of complex dynamical systems. First, a new 

type of first order (k = 1) generalized quasi-orthogonal 

polynomials of Legendre type via classical quasi-orthogonal 

polynomials was introduced. The short principle to design 

generalized quasi-orthogonal polynomials and filters was also 

shown. A generalized quasi-orthogonal functional network 

represents an extension of classical orthogonal functional 

networks and neural networks, which deal with general 

functional models. A sequence of the first order (k = 1) 

generalized quasi-orthogonal polynomials was used as a new 

basis in the proposed generalized quasi-orthogonal functional 

networks. The proposed method for determining the 

parameter sensitivity of complex dynamical systems is also 

given, and an example of a complex industrial system in the 

form of a tower crane was considered. The results obtained 

have been compared with different methods for parameter 

sensitivity analysis. 

 

 Index Terms—Orthogonal polynomials; Sensitivity analysis; 

Functional networks; Tower crane. 

I. INTRODUCTION 

The development of the application of orthogonal 

functions is very long and dates back to the end of the 18th 

century [1]–[3]. However, only since the 1990s, the 

possibility of their application in the field of control 

systems, and especially in identification, modelling and 

control of dynamical systems, has been considered. 

Recently, great progress has been made in the field of 

orthogonal rational functions, orthogonal algebraic and 

trigonometric polynomials, as well as orthogonal systems as 

a whole [4]–[8].  

The use of orthogonal functions and filters in various 

control problems of dynamical systems is mainly motivated 

by their simplicity, easy practical design, fast calculations 

and response. The favourable properties of orthogonal 
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filters, such as easy implementation, precision, and reaction 

speed, have influenced their application in adaptive 

automatic control systems, as well as controller optimal 

adjustment [7]–[9]. 

In particular, a large number of papers deals with the 

application of orthogonal systems in electronics [9], circuit 

theory, digital signal processing [10], and 

telecommunications. One of the most important applications 

of orthogonal functions is the design of orthogonal filters 

that can be successfully applied to design orthogonal signal 

generators [11], [12], for modelling and identification of 

dynamical systems, as well as for the practical 

implementation of optimal and adaptive systems [13], [14].  

The authors of this paper developed and designed a new 

type of orthogonal polynomials and filters. In [4], a new 

type of almost orthogonal polynomials and filters of the 

Legendre type, i.e., improved almost orthogonal 

polynomials/filters, was introduced. In practice, there is also 

often a need to form filters in which the degree difference in 

the polynomials of the numerator and denominator of the 

transfer function is greater than one [5], [12]. Quasi-

orthogonal polynomials whose Laplace transforms are 

rational functions with an arbitrary difference in the degree 

of the polynomials are suitable for the formation of these 

transfer functions [9], [13]. The terms which are presented 

as a combination of quasi-orthogonality and almost 

orthogonality is introduced in [11], [12]. They represent 

certain generalizations of classical orthogonality suitable for 

application in control systems, i.e., technology in general. 

Also, the new mathematical background derived for these 

types of orthogonality and polynomials based on them is 

also presented in [3]. 

In this paper, we propose a new approach to analysing the 

sensitivity parameters of dynamic systems. During the 

system sensitivity analysis, various influences that can 

change the coordinates of the state of the system [15] are 

taken into account. The impact of changing the system’s 

parameters on sensitivity is achieved through a series of 

experiments when the values of the parameters are changed 

following [16]–[18]. The proposed analysis became a useful 
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tool in modelling, designing, validating and testing system 

performance. 

Orthogonal functional networks (OFNs) first appeared in 

scientific works in the late 20th century [19]. These 

networks represent an update of the standard neural 

networks (NNs). OFNs have been shown to solve the same 

problems as standard NNs. On the other hand, there are 

many examples where NNs cannot send a request for 

problem solving and are naturally formulated using OFNs 

[19], [20]. In general, the orthogonal functional network is a 

useful mathematical tool to solve a wide range of problems 

in different technical areas of expertise [20]–[24], etc. 

In this paper, a generalized quasi-orthogonal functional 

network (GQOFN) model is presented where neuron 

functions are approximated by Legendre generalized quasi-

orthogonal basis functions. GQOFN is used for analysis of 

parameter sensitivity of complex dynamical systems, i.e., 

the tower crane system. The tower crane system (TCS) is a 

strong nonlinear electromechanical system controlled from a 

PC [25].  

Combining first order (k = 1) generalized quasi-

orthogonal polynomials and orthogonal functional networks 

presents a powerful mathematical tool. It can be used 

successfully in the analysis of some properties of 

dynamically complex systems, control of systems, 

modelling, identification of parameter systems, sensitivity 

analysis, robustness, etc. 

This paper is organized as follows. Section I represents a 

detailed introduction. In Section II, the generalized quasi-

orthogonal polynomials (GQOP) are presented. Section III 

describes a process of determining parameter sensitivity 

using newly designed GQOP of Legendre type. The 

development and design processes of GQOFN processes are 

explained in a mathematical tool overview in Section IV. 

The tower crane is described and explained in detail in 

Section V. Experimental results that verify the given method 

are presented in Section VI. 

II. GENERALIZED QUASI-ORTHOGONAL POLYNOMIALS 

In this section, orthogonal polynomials in a strictly 

defined interval [-1, 1] were considered. All orthogonal 

polynomials over finite range (Legendre, Chebyshev I kind, 

Chebyshev II kind, Jacobi, and Gegenbauer) are defined 

over interval [-1, 1]. For the purpose of analysing and 

processing real signals in control systems, which can have 

values over arbitrary intervals, classical polynomials can be 

redefined, i.e., shifted on desired interval [0, 1] in complex 

domain, i.e., on interval [0, ∞] in time domain. 

Now, quasi-orthogonal polynomials as sequence of 

polynomials   k

nP x  were introduced [5] 
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where k represents the order of quasi-orthogonality, a and b 

are the boundaries of the quasi-orthogonality interval, and 

w(x) is the weight function. 

Quasi-orthogonality was introduced by the Hungarian 

mathematician Riesz in [26]. Quasi-orthogonal functions 

were later explored in several papers in [3], [5]–[7], [27], 

and [28]. In order to analyze the properties and relations of 

quasi-orthogonal polynomials, the boundaries of the interval 

of quasi-orthogonality are a = 0, b = 1 and the weight 

function is   .w x x  Now, quasi-orthogonal polynomials 

have the following inner product 
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where the norms ,

k

n mN  can be easily obtained in closed form 

[6], [9]. 

To introduce a new sequence of polynomials, as an 

orthogonal basis to use in GQOFN, an arbitrary function f(x) 

was developed into the class of quasi-orthogonal 

polynomials of the k-th order in the following way 

(determining quasi-Fourier coefficients) 

    
0

.
n

k

i i

i

f x a P x


  (3) 

For example, for the polynomials of first order (k = 1) 

quasi-orthogonality, after multiplying by 1

iP  and integrating 

from 0 to 1 (boundaries of the quasi-orthogonality interval), 

it was obtained 
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If introduce label:    
1

1 1

0

,i iF f x P x dx   it obtains 

  1 1 1 1 1 1 1

1 , 1 , 1 , 1 ,    1, , ,i i i i i i i i i ia N a N a N F i n        (5) 

i.e., system of equations (where n = 0, 1, …, n) 
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,
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 (6) 

This is the system of n equations and n + 1 unknown 

variable. To fully determine unknown coefficients a0, a1, …, 

an, we need one more additional equation. By using the 

property of quasi-orthogonality of Legendre polynomials 

   0 1
i

iP    and (1) we obtain an additional equation 

    1 1 1 1

0 1 2 1 0 .
n

na a a a f        (7) 

Determinant (dimD = (n + 1)×(n + 1)) of the system is 
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It can be noticed that for the case k = 1 it obtains a system 

of (6), with three terms on the left side of the equality sign 

(with the exception of the first and the last). The 

consequence is the three-diagonality of determinant (8). For 

the general case of quasi-orthogonal polynomials of k-th 

order, the procedure is the same, except that system (6) on 

the left side has 2k + 1 terms, and the determinant (8) is 2k + 

1 diagonal. 

The orthogonal Legendre polynomials    nP x


 were 

defined and improved in [3], [4] as 
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where ,n iA
 represents the coefficients defined by 
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here δ is a constant close to one: δ = 1 + ε ≈ 1, constant ε 

close to zero: ε ≈ 0, and Г is a symbol for the gamma 

function [2]. Now, if applied (2) on the improved almost 

orthogonal polynomials given by (9) and (10), the GQOP of 

Legendre type is obtained over interval (0, 1) with the 

weight function   1:w x   
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These polynomials represent a combination of improved 

almost and quasi-orthogonal polynomials of Legendre type. 

In further consideration, we use the first order (k = 1) of 

GQOP. First members of the sequence of proposed 

polynomials are given at the following system equations

                  

   

   
 

 

   
  

  
  

   
           

   

1,

1

1, 2

2

2
1, 3 2

3

1, 4 3 2

4

3

1,  

2
1 ,  

2 2

3 2 3 1 2 1
1 2 ,

6 2 3

2 4 3 4 1 3 2 3 1 2 3 2

12 2 2

1 2 1 3 4
.

6 4

P x x

P x x x

P x x x x

P x x x x

x









 


    
 

        

   

 
   

 
 

    
 
 

    
       

 
         

     
 

   
   

                    (13)

III. PARAMETER SENSITIVITY 

It is widely known that every complex industrial system 

is in some way imperfect [2], [4], [9], [13], [15]. Namely, 

every real system is made of technical components that can 

never be realized with a 100 % accuracy of the nominal 

value. The consequence is that the entire system will not 

operate as designed. The measure to which the system 

deviates from the desired state with certain deviations or 

changes in parameters represents the sensitivity of the 

system to these changes in parameters. If the behaviour of 

the system deviates more than desired, for a certain change 

of parameters, it is all more sensitive. The sensitivity of a 

system defined in this way represents parametric sensitivity. 

In the analysis and synthesis of technical systems, and 

especially automatic control systems, the sensitivity 

functions related to the output system are important, because 

they are the quantities that are controlled.  

On the other hand, after introducing substitution 
tx e  

into (11) and applying the Laplace transform, we obtain a 

transfer function (the first order k = 1) suitable for further 

consideration [5], [12] 
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The transfer function given above by (14), can be 

rewritten in the following form 
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(15) 

where Ai and Bj represent real constants, X(s) represents the 

input of the system, and Y(s) represents the output of the 

system. 
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The transfer function given by (15) represents a linear 

system, which has (2n - 1) parameters, Ai (i = 1,…, n - 1) 

and Bj (j = 1, …, n). Therefore, it is possible to define the 

(2n - 1) sensitivity functions in the s-domain as follows 
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For parameters Ai and Bj, sensitivity functions are given by the following expressions: 
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In the case of the system sensitivity in steady state, it can 

be used [15], [23]: 
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where m represents limits ±20 %, ±10 %, ±5 %, and ±1 % 

from the optimal value of the parameter Ai and Bj, 

respectively. 

IV. GENERALIZED QUASI-ORTHOGONAL FUNCTIONAL 

NETWORKS 

The typical architecture of a classical orthogonal 

functional network [15], [19]–[22] is shown in Fig. 1. 

 
Fig. 1.  Block diagram of the orthogonal functional network model. 

The orthogonal functional network (Fig. 1) consists of 

four inputs (x1, x2, x3, and x4), one output (x8) layer, one or 

more layers of intermediate storage units (x5, x6, and x7), and 

one or multiple layers of processing units (f1, f2, f3, and f4). 

In the case where the input values are known, the output is 

determined by the function and type of neurons. If we use 

generalized quasi-orthogonal basis functions for neurons, 

we can get GQOFN (see Fig. 2) 

  
1

.
n

i i

i

y w f x
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If we use Legendre polynomials of the first order (k = 1) 

of the GQOP basis, we can design a GQOFN of Legendre 

type. The function fi in this case will represent the first i 

function in the first layer, i.e.,    1,
.iP x


 The output signals 

of these layers are orthogonal in the time domain. The 

proposed type of network can be used to approximate and 

model each system with optimal accuracy, adjust the weight 

of the function wi, and minimize the criterion function. A 

genetic algorithm will settle optimal weight values [3]–[13]. 

 
Fig. 2.  The generalized quasi-orthogonal functional network. 

V. TOWER CRANE-MATHEMATICAL MODEL 

For the purpose of sensitivity analysis of dynamical 

systems model, we will use the tower crane system shown in 

Fig. 3. 

The tower crane is a powerful nonlinear 

electromechanical system with complex dynamic behaviour 

[29]–[33]. Previous works have shown that it is challenging 

to design a control for such a system. The operation of this 

system is done via PC. Therefore, it comes with hardware 

and software that can be easily assembled and installed 

under laboratory conditions. 

The tower crane setup (Fig. 3) is made of a payload 

hanging on a pendulum-like lift-line wound by a motor 

mounted on a cart. The payload can be lifted and lowered in 

the z-direction. Horizontal movement is possible for both 

the arm and the cart. 

The angle θ represents the angular position of the arm. 

The payload can move in all three dimensions. Three 

independent DC motors power this system. Also, this 

system has five encoders installed to measure five variable 

states.  
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Fig. 3.  Tower crane by INTECO. 

The encoders measure movements with high resolution 

equal to up to 4096 pulses per rotation (ppr). These 

encoders, together with the specialised mechanical solution, 

create a unique measurement unit. The deviation of the load 

is measured with a high accuracy equal to 0.0015rad. The 

power interface amplifies the control signals that are 

transmitted from the PC to the DC motors. The schematic 

diagram related to the mathematical model of the tower 

crane is shown in Fig. 4 [25]. 

The length of the tower is 1.63 m, the jib is 1.215 m long. 

A constant length of 0.17 m of the payload lift-line is 

considered; the payload mass is 0.333 kg. 

To understand the work of TCS, we can measure the 

following quantities: xw, θ, L, α, and β, which represent the 

distance of the cart along the arm from the centre of the 

construction frame, the angular position of the arm, the 

length of the lift-line, the angle between the z axis and the 

projection of the lift-line onto the x-z plane, and the lift-line, 

respectively.  

 
Fig. 4.  TCS model coordinates. 

To obtain an appropriate mathematical model of the 

observed system, it is necessary to choose the coordinates of 

the state. The main point (0, 0, 0) of the Cartesian system is 

in the centre of TCS. In Fig. 4, we can see the payload 

position. Now, the position of the payload from Fig. 4 can 

be express [25] 
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The first derivatives of the previous equations and the 

kinetic and potential energy of the payload are calculated. 

Based on the Lagrange equations [25], the following 

equation that describes the dynamics of TCS is given in [29]
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               (23) 

where: 1 ,x     2 ,x     3 ,wx x  4 ,x    5 ,x     

6 ,x     7 ,wx x   8 ,x     1 ,wu x   2 ,u     .L const  

The complete mathematical background of complex 

mathematical tools can be found in [29]. 

VI. EXPERIMENTAL RESULTS 

Through a series of experiments, the minimization of the 

criterion function (in our case, the mean square error 

(MSE)) was performed, with the goal of obtaining the 

transfer function of the tower crane system. 

To obtain the model of the tower crane system, we will 

use the GQOFN first order (k = 1) of Legendre type, which 

has four weight wi. The data used in the experiment is the 

trolley position in the x-direction. Applying the method of 

identification of the linear TCS system [2], [3], we obtained 

the transfer function in the form 

   2

0.00002064 1.128
.

0.0005 0.0446 1

s
W s

s s




 
 (24) 
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Now, using the previous transfer function, we can use 

GQOFN to obtain the transfer function of the TCS. This 

transfer function depends on parameter δ, which represents 

the system’s imperfection. The values of δ contain different 

impacts of all imperfect components from which the system 

is made. This parameter directly influences the output 

system response. After applying the series of tests and 

experiments with different ranges of the parameter δ [4], 

[12], it was determined that the optimal value for δ is equal 

to 1.000345. 

The optimal values of the adjustable parameters w1, w2, 

w3, and w4, needed for the best model of the unknown 

system, are determined using the genetic algorithm [3], [4], 

[9]. Genetic algorithm used in simulation has the following 

parameters: a population of 300, a number of generations of 

600, the selection was stochastic uniform and reproduction 

with 10 elite individuals. The chromosome has a structure 

that consists of four adjustable parameters. After the 

previous procedure was completed, we obtained the 

following values: w1 = 0.0000247, w2 = -0.03256, w3 = 

0.11478, and w4 = 0.06454. The quality of identification is 

evident from the comparison of output time responses of the 

real device and the model (24) shown in Fig. 5.  

 
Fig. 5.  Trolley position in the x-direction. 

Next, we tuned the first parameter, w1, in the range of 

±20 %, ±10 %, ±5 %, and ±1 % from the optimal value, 

while the other parameters kept their values. 

After each change in parameter w1, we measured the 

output in a steady state through experiments. Based on (19) 

and (20), the sensitivity value related to parameter w1 was 

calculated and the results are shown in Table I-IV. 

TABLE I. SENSITIVITY VALUE RELATED TO PARAMETER W1. 

Tol. m w1 Δy(∞) 1wu  

+20 % 0.000029 -0.00000016796 0.034002 

+10 % 0.000027 -0.00000006754 0.028144 

+5 % 0.000026 -0.00000003401 0.026158 

+1 % 0.000025 -0.00000000660 0.022007 

-1 % 0.000024 0.000000015480 0.022112 

-5 % 0.000023 0.000000044804 0.026355 

-10 % 0.000022 0.00000007614 0.028200 

-20 % 0.000019 0.000000194513 0.034125 

TABLE II. SENSITIVITY VALUE RELATED TO PARAMETER W2. 

Tol. m w2 Δy(∞) 2wu  

+20 % -0.042312 0.002340274104 0.031257 

+10 % -0.035816 0.000091223352 0.028017 

+5 % -0.034188 0.000042331256 0.026002 

+1 % -0.032886 0.000007124404 0.021854 

-1 % -0.032234 -0.000007168088 0.021988 

-5 % -0.030932 -0.000042743141 0.026225 

-10 % -0.029304 -0.000090839144 0.027899 

-20 % -0.026048 -0.000202692512 0.031126 

TABLE III. SENSITIVITY VALUE RELATED TO PARAMETER W3. 

Tol. m w3 Δy(∞) 3wu  

+20 % 0.137736 -0.000694901076 0.030271 

+10 % 0.126258 -0.000316276290 0.027555 

+5 % 0.120519 -0.000147102048 0.025632 

+1 % 0.115928 -0.000024112592 0.021004 

-1 % 0.113632 0.000024197544 0.021078 

-5 % 0.109041 0.000147934203 0.025777 

-10 % 0.103302 0.000311501442 0.027139 

-20 % 0.091824 0.000696324348 0.030333 

TABLE IV. SENSITIVITY VALUE RELATED TO PARAMETER W4. 

Tol. m w4 Δy(∞) 4wu  

+20 % 0.077448 -0.000369852924 0.028653 

+10 % 0.070994 -0.000155922186 0.024159 

+5 % 0.067767 -0.000068983579 0.021377 

+1 % 0.065185 -0.00001239819 0.019222 

-1 % 0.063895 0.000012241455 0.018979 

-5 % 0.061313 0.000068625382 0.021266 

-10 % 0.058086 0.000154902454 0.024001 

-20 % 0.051632 0.000368407228 0.028541 

 

Experiments have shown that the TCS system is the most 

sensitive to parameter w1 and the least susceptible to 

parameter w4. This indicates that if we need to adjust the 

system’s output in steady state, we need to change the 

values of the parameter w1. If it is not possible to adjust the 

system output with one parameter, it is necessary to change 

two parameters (w1 and w2) in specified ranges.  

To compare the results obtained using GQOFN, a series 

of experiments were performed using the nominal range 

sensitivity method from [15], [34]. This method is based on 

the principle that only one of the parameters is tuned until 

the system output is acceptable while the other parameters 

retain their optimal value. The results using this method are 

shown in Table V. 

From Table V, we can conclude that the new results are 

similar to the previous results presented in other tables, with 

the dependencies shifted to lower sensitivity values. The 

disadvantage of this method is that it does not include the 

effect of input correlation. Also, a significant drawback is 

that a very complex mathematical tool is needed to obtain 

the parameters [34]. 
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TABLE V. SENSITIVITY VALUE RELATED TO PARAMETER W1–W4 

USING NOMINAL RANGE METHOD. 

Tol. m 1wu  
2wu  

3wu  
4wu  

+20 % 0.033876 0.030003 0.029432 0.028331 

+10 % 0.028056 0.027799 0.027122 0.023888 

+5 % 0.025551 0.025811 0.025701 0.021233 

+1 % 0.020072 0.020991 0.020699 0.018866 

-1 % 0.020123 0.021012 0.020812 0.018001 

-5 % 0.024898 0.026015 0.025743 0.021011 

-10 % 0.027977 0.027671 0.026771 0.023712 

-20 % 0.033512 0.029756 0.029117 0.028119 

VII. CONCLUSIONS 

In this paper, the concept of a combination of 

generalized, quasi- and almost orthogonal functional 

networks is exploited to consider the influence of system 

parameters on the sensitivity analysis of dynamic complex 

systems. First, a type of the first order (k = 1) generalized 

quasi-orthogonal polynomials of Legendre type was 

introduced through classical quasi-orthogonal polynomials. 

The complex mathematical backgrounds for the proposed 

approach to determine the sensitivity of dynamical systems 

through GQOFN are also given. 

Experiments with the TCS system were performed to 

validate the theoretical results. The advantages of the 

application of newly obtained generalized quasi-orthogonal 

functions in combination with orthogonal functional 

networks in the analysis of parameter sensitivity of this 

complex TCS system based on proposed method have been 

demonstrated in experiments. All results have been 

compared with known nominal range sensitivity. The 

combination of orthogonal functional networks and 

generalized quasi-orthogonal polynomials could be 

successful in solving problems of some properties of wide 

spectra dynamical complex systems. On the other hand, the 

method proposed in this paper can be used in the fields of 

telecommunications, control of complex industrial systems, 

modelling, and identification of parameters of unknown 

dynamical systems. 
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