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1Abstract—This study revealed an adaptive state feedback 

control method based on recursive least squares (RLS) that is 

introduced for a time-varying system to work with high 

efficiency. Firstly, a system identification block was created 

that gives the mathematical model of the time-varying system 

using the input/output data packets of the controller system. 

Thanks to this block, the system is constantly monitored to 

update the parameters of the system, which change over time. 

Linear quadratic regulator (LQR) is renewed according to 

these updated parameters, and self-adjustment of the system is 

provided according to the changed system parameters. The 

Matlab/Simulink state-space model of the variable loaded 

servo (VLS) system module was obtained for the simulation 

experiments in this study; then the system was controlled. 

Moreover, experiments were carried out on the servo control 

experimental equipment of the virtual simulation laboratories 

(VSIMLABS). The effectiveness of the proposed new method 

was observed taking the performance indexes as a reference to 

obtain the results of the practical application of the proposed 

method. Regarding the analysis of simulation and experimental 

results, the proposed approach minimizes the load effect and 

noise and the system works at high efficiency. 

 

 Index Terms—Adaptive state feedback; LQR; Recursive 

least squares; System identification; Variable loaded servo.  

I. INTRODUCTION 

Adaptive control is defined as controller structures that 

can change their behavior against disturbance effects such 

as system uncertainties, variable load, and noise. Adaptive 

controllers, in principle, are used to improve functionality 

and performance. Adjustable parameters and adaptation 

mechanisms depending on situations are designed in such 

systems. There are many adaptive controller structures in 

literature such as model reference adaptive control, adaptive 

control with state feedback, self-adjusting regulator, and 

real-time parameter estimation-based adaptive control. 

Moreover, there are also the following adaptive control 

applications: stabilization of the terminal voltage of the 

photovoltaic generator [1], permanent magnet synchronous 

motor speed control [2], asynchronous motor drive control 

[3], cruise control system [4], tractor-trailer mobile robot 

control [5], control of space vehicles [6]. 
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Approaches that are used as system identification 

methods, such as Kalman filter, model type converter, 

particle filter, extended Kalman filter, unscented Kalman 

filter, iterative polynomial model estimator, and recursive 

least squares (RLS) estimator, are also encountered in 

adaptive control systems. Moreover, appropriate modeling 

for the system is carried out using algorithms such as the 

linear identified model, nonlinear grey-box model, nonlinear 

ARX model, and Hammerstein-Wiener model. Hybrid 

adaptive position controller design in which RLS estimator, 

disturbance observer and Lyapunov methods are used 

together [7], RLS estimator method based on a discrete-time 

sliding mode controller used in the control of the DC motor 

speed [8], and the RLS approach, which estimates the 

parameters of the DC motor model [9], can be given as 

examples to adaptive controller designs. Adaptive designs 

developed are also tested on other systems. There are 

studies in which the values of the system parameters are 

estimated using the RLS method and high performance 

control [10] is performed to ensure stable operation of a 

one-wheeled robot. A study carried out on a robotic 

manipulator proposed an adaptive approach using the 

Kalman filter (KF) to estimate the linear acceleration and 

angular velocities of the load and the RLS method to define 

the load parameters [11]. RLS-based adaptive methods are 

also used in electric vehicles that have become the focus of 

researchers in recent years. Approaches such as the iterative 

least squares method with adaptive forgetting factor [12], 

the RLS adaptive extended Kalman filter algorithm [13], 

and the adaptive heuristic critical based RLS algorithm [14] 

are preferred in system identification and controller designs 

for lithium-ion batteries, which are a very important part of 

electric vehicles, to operate at high performance. 

The linear quadratic regulator (LQR) method, known as 

linear optimal state feedback control and is used in adaptive 

control mechanisms, aims to minimize the errors that occur 

in the state output values. LQR is a method that increases 

system performance and stability [15]. The most suitable 

control input is produced by using the controller gain 

coefficients calculated with LQR. Thus, a response curve 

close to the desired reference value can be obtained. LQR 

control in state feedback servo control systems is used 
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together with the Kalman filter, which estimates the real 

states of the system, especially in noisy environments [16], 

[17]. This study estimated LQR parameters with the RLS-

based system identification block. 

In this paper, first Section II discusses the discrete-time 

state-space model of the VLS system. Section III gives a 

discrete-time LQR model, in which the state feedback 

matrix calculation is made. Section IV presents the 

parameter estimation approach with the RLS method. 

Section V includes an adaptive state feedback control 

method-based RLS. Finally, the simulation and 

experimental results are discussed in Section VI. 

II. DISCRETE-TIME STATE-SPACE MODEL OF THE VLS 

SYSTEM 

In the beginning, the transfer function of the system 

should be computed to obtain the discrete-time state-space 

model of the VLS system. The reduced transfer function of 

the system ( ,mL  negligible) is obtained as follows 

considering the motor and load parameters in Table I. 

TABLE I. BRUSHED DC MOTOR AND VLS SYSTEM PARAMETERS. 

Symbol Definition Value 

mR  Motor armature 

resistance 
2.9   

mL  Motor armature 

inductance 
0.278 mH  

tk  Motor torque 

constant 
0.0256 Nm/A  

mk  Motor back-

EMF constant 
0.0256 V/(rad/s)  

mJ  Motor inertia 6 21.49 10 kgm  

DJ  Disk inertia 5 22.125 10 kgm  

lJ  Load inertia 5 21.75 10 kgm  

mB  Motor viscous 

coefficient 
(negligible)  

lB  Load viscous 

coefficient 
40.989 10 Nms  

Initial Load 

sJ  Initial load 

inertia 
5 22.274 10 kgm  

sB  Initial viscous 

coefficient 
63.544 10 Nms  

Variable Load 

eqJ  Load inertia 

5 2

1

5 2

1

2.274 10  kgm ,0 < t < t

3.024 10  kgm , t t





  
 

   

 

eqB  Load viscous 

coefficient 

6

1

4

1

3.544 10  Nms,0 < t < t

1.024 10   Nms, t t





  
 

   

 

 

The discrete-time transfer function of the VLS system is 

obtained by using the expression of the transfer function 

“    ve 0s

s ss e kT T        ” transformation 

obtained in (1) (with the zero order hold (ZOH) method for 

the second sampling period 0.001sT  ) as follows 

  
 

  9 2 5

0.0256
.

5.834 10 6.086 10 0.00067

Y s
G s

U s s s 
 

   
 (1) 

The discrete-time model given by (2) can be written as 

(3) in the controllable canonical form: 

  
 

 

1 2

1 5 2

0.3788 0.03999
,

1 0.989 2.947 10

Y z z z
G z

U z z z

 

  


 

  
 (2) 

 

      

    

1

2

0.989 0.3788

2.947 05 0.03999 .

Y z z Y z U z

z e Y z U z





    

    (3) 

Discrete-time state-space expressions of the VLS system: 

      1 ,x k T Ax kT Bu kT      (4) 

      .y kT Cx kT Du kT   (5) 

In state-space form, 

  
 
 
 

 
 
 

1

2

3

.

m

m

x kT kT

x kT x kT kT

x kT i kT





   
   

    
   
   

 (6) 

In this case, transformation parameters and state-space 

matrixes are found as follows: 0 0,   1  0.989,    

1 0.3788,      5

2 2.947 10 ,     2 0.3999,    

5

0 0 0

1 0 2.947 10 ,

0 1 0.989

A 

 
 

 
 
  

0

 0.3999 ,

0.3788

B

 
 

 
 
  

  0 0 1 ,C   

0.   D   

The matrixes “A” and “B” are time-invariant matrixes 

with constant coefficients, as described above, for time-

invariant systems. In such systems, optimum control is 

achieved with constant coefficient controllers such as LQR. 

However, as the load changes over time, the coefficients of 

the A and B matrix change in systems that vary over time. In 

this situation, it is necessary to constantly update the A and 

B matrixes and use the updated A, B matrixes for optimal 

control of the VLS system: 

 
2

1

0 0 0

1 0 ,

0 1

A 



 
 

 
 
  

 (7) 

 
2

1

0

.B 



 
 


 
  

 (8) 

In this study, the parameter values were constantly 

observed for changing load. The observable matrix form 

given above was constantly updated with the RLS method, 

and thus, the variable load effect is minimized. 

III. DISCRETE-TIME LQR MODEL 

The LQR technique that is preferred in many control 

applications is a method that is frequently used in modern 

optimal control theory and can compute the optimal 

feedback gain value for stable operation of state feedback 

systems [18]. 

Regarding the discrete-time LQR model, the expression 

that gives the most appropriate control input for the state 

feedback control method is given by (9) below 
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    .lqru kT K x kT   (9) 

Moreover, the discrete-time quadratic cost function that is 

used to minimize is also given in (10) 

  
       

   1

.
2

T T

T
n

x kT Qx kT u kT Ru kT
J u

x kT Nu kT





  
 
  

  (10) 

The equation for a discrete-time system is as follows 

      1 .x k T Ax kT Bu kT      (11) 

Since “N” is a negligible value in the discrete-time 

quadratic cost function in (10), it can be written N = 0. The 

situation obtained from the discrete-time Riccati equation in 

(12) is shown in (13) feedback gain matrix: 

     
1

0,T T T TA SA S A SB B SB R B SA Q


      (12) 

  
1

.T T

lqrK B SB R B SA


   (13) 

IV. PARAMETER ESTIMATION BY RLS METHOD 

The least squares method is a standard regression method 

that is utilized to write the mathematical connection between 

two physical quantities that vary depending on each other as 

an equation that is as realistic as possible. In other words, 

this method is used to find a function curve that will fit “as 

close as possible” to the measured data points. For the 

Gauss-Markov theorem, the least squares method is the 

optimal method for regression. 

Recursive least squares (RLS) is an adaptive filter 

algorithm that iteratively finds the coefficients that minimize 

the weighted linear least squares cost function by utilizing 

input data. This approach is different from other algorithms, 

such as least mean squares (LMS), which aim to reduce the 

mean square error. The input signals are considered 

deterministic in deriving RLS while they are considered 

stochastic for LMS and similar algorithms. RLS converges 

extremely fast, but it is also a disadvantage that it requires 

complex and high computation when we compared with 

most of its competitors. 

The RLS estimator uses a general equation expression as 

given below to estimate the parameters of a linear system. In 

this equation,  t  values are computed using the known 

variables ( )y t  and  H t  

      .y t H t t  (14) 

Recursive algorithms are used for online parameter 

estimations in calculations. Recursive algorithms are 

divided into two: infinite history and finite history. Infinite 

history algorithms calculate from the beginning at all time 

intervals to minimize the error between observed and 

predicted outputs. Infinite history algorithms are 

implemented using RLS estimator and recursive polynomial 

model estimator blocks in a Matlab/Simulink environment. 

Finite history algorithms calculate at certain time intervals 

to minimize the error between observed and predicted 

outputs. Finite history algorithms are implemented by using 

RLS estimator and recursive polynomial model estimator 

blocks in Matlab/Simulink environment. Regarding the 

comparison of infinite history algorithms, parameter 

estimations can be made more easily with finite history 

algorithms in situations where parameter values change 

quickly and abruptly. Equation (15) shows the general 

expression of the infinite past iterative estimation algorithm 

           ˆ ˆ ˆ1 ,t t K t y t y t      (15) 

where  ˆ t  are the parameters predicted at moment of “t” 

while  y t  is the output signal observed at the moment of 

“t” and  ŷ t  is the instantaneously observed signal at time 

(t - 1) of  .y t  Gain value (  K t ) determines how much 

the current estimation error (    ˆy t y t ) will affect the 

update of the parameter estimation. In general, recursive 

prediction algorithms minimize the expression of the 

estimation error (    ˆy t y t ). The gain expression  K t  is 

written by the equation below 

       ,K t Q t t  (16) 

where  Q t  is the minimized function,  t  is defined as 

the gradient of the estimated model output (  ŷ t  ). The 

recursive algorithms supported by the Matlab System 

identification toolbar vary based on different approaches 

consisting of different calculations in ( )Q t  and  t  

values. The expression of parameter gradient is shown with 

the linear regression equation in (17) 

        0 .Ty t t t e t    (17) 

In this expression,  t  is the regression vector that is 

computed based on input-output values measured in the 

previous iteration.  0 t  is the values of the real 

parameters. The noise source that is accepted as white noise 

is expressed with  .e t  Estimated output equation is given 

below. The infinite history recursive prediction algorithms 

used for online control of the system are divided into three 

categories, including forgetting factor, Kalman filter, and 

gradient 

      ˆˆ 1 .Ty t t t    (18) 

The formulas for the forgetting factor and the Kalman 

algorithm are more complex compared to the formulas used 

in the gradient method. However, it typically displays a 

better convergence feature. This study used the Kalman 

filter and obtained simulation and experimental results. 

Kalman filter equations that are used as a model fitting 

algorithm are given below. 1R  is the parameter change 
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covariance matrix that is determined by the user. Moreover, 

2R P  is the covariance matrix of estimated parameters, 

while 1 2/R R  is the parameter change covariance matrix: 

           ˆ ˆ ˆ1 ,t t K t y t y t      (19) 

      ˆˆ 1 ,Ty t t t    (20) 

       ,K t Q t t  (21) 

  
 

     2

1
,

1T

P t
Q t

R t P t t 




 
 (22) 

    
       

     
1

2

1 1
1 .

1

T

T

P t t t P t
P t P t R

R t P t t

 

 

 
   

 
 (23) 

The expression in (23) can be defined in linear regression 

form by the equation below 

        0 .Ty t t t e t    (24) 

( )Q t  value in (22) is computed with the Kalman filter. 

The expression  0 t  that is the real parameter is calculated 

as follows 

      0 0 1 ,t t w t     (25) 

where  w t  is known as Gaussian white noise. The relation 

between  w t  and parameter change covariance matrix 1R  

is shown by the equation below 

     1.
TEw t w t R  (26) 

The values 2R  above equals the variance of the value 

 .e t  The expression  e t  is written as follows if there is 

       0

T t
y t t e t    

        0 .Te t y t t t    (27) 

Finally, Kalman filter algorithms are specified by 

recording output signal   ,y t  gradient 1,R  2R  values with 

the first estimated values of parameters and  0P t   values 

(covariance matrix including parameter errors) to the 

system. Moreover, 1R  and  0P t   matrixes are accepted 

as scaled values such as 2 1.R   Regarding scaling, it does 

not affect parameter estimation. 

V. RLS-BASED ADAPTIVE STATE FEEDBACK CONTROL 

This chapter discusses the recursive least squares (RLS) 

method and the system identification-based adaptive state 

feedback control method. This proposed approach consists 

of three main parts: system identification, parameter 

estimation, and state feedback. Figure 1 shows the block 

diagram of the adaptive state feedback control system. As is 

seen in figure, the mathematical model is obtained by using 

the input/output data of the VLS system, which is controlled 

by the system identification block In this block, the system 

output for each input is monitored online, with system 

identification model fitting algorithms. Optimum 
lqrK  

values are specified on the basis of matrixes A, B, and C that 

are obtained for the initial load of the controlled VLS 

system to make the system work as state feedback. 

Moreover, RLS system identification block running in the 

background is also added to the system. The RLS method is 

a good learning technique and it also gives desired results 

with updated parameter values compared to the previous 

iteration. For this reason, it is impossible to receive the 

desired response in the first iteration. However, it is possible 

to obtain the real model of the system in a process of time. 

The system identification block occurs in three stages. 

 
Fig. 1.  RLS-based adaptive state feedback control block diagram. 

During the period determined in the first stage, open-loop 

input/output data packets are saved at the initial load of the 

controlled system. In the second stage, these saved data are 

defined in the system identification method for use. Finally, 

the transfer function of the controller providing the most 

appropriate response curve is obtained by applying different 

model fitting algorithms. Figure 2 shows the experimental 

operating principle of the system identification process. 

Parameter estimation is performed using the system output 

and control input data in the adaptive state feedback control 

structure. As the operation of the system continues, the 

parameter values are constantly updated. The necessary 

parameter data are provided for the online calculation of the 

observable canonical form matrix values of A, B, C, R, and 

Q via the parameter estimation block. Finally, as is seen in 

Fig. 3, matrix values are defined as inputs of the online 
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LQR control block. The optimal Klqr value is calculated 

online after the calculation of the Riccati equation is 

performed. 

 
Fig. 2.  Work principle of system identification. 

 
Fig. 3.  Online discrete-time LQR control. 

VI. SIMULATION AND EXPERIMENTAL RESULTS 

The position or trajectory control of the VLS system is 

simulated and applied by using the RLS-based adaptive 

state feedback control method in this chapter. Figure 4 

shows the experimental set of the servo system used in the 

application study.  

 
Fig. 4.  Servo control experimental equipment of virtual simulation 

laboratories (VSIMLABS). 

This set includes a laptop, DC Motor, disc-shaped 

variable load, potentiometer, DAC-ADC board and V-DAQ 

board. With the VSIMLABS system, various control 

experiments can be performed with high performance and 

accuracy in the Matlab/Simulink environment. 

A. Simulation Results 

In this chapter the system identification toolbar in the 

Matlab environment is used to provide an optimal control 

signal for a time-invariant servo system. The input/output 

data packets of the open-loop system are identified in the 

interface of this toolbar in a suitable format. For this 

purpose, a random reference signal was applied to the open-

loop servo system and the obtained input-output data were 

saved in Matlab workspace to be used in the system 

identification toolbar. Then, system identification model 

fitting algorithms such as Gauss-Newton, Adaptive Gauss-

Newton, Interior-Point, and Levenberg-Marquardt were 

applied to obtain the optimal response curve. 

Table II shows the performance percentages of first order, 

second order, and third order system transfer functions and 

response curves using the system identification toolbar. The 

transfer functions estimated here are used in the controller 

design. The Gauss-Newton and Levenberg-Marquardt 

algorithms give the best performance with a success rate of 

91.4 % when the transfer functions estimated for the second 

order system are applied to the system. Figures 5 and 6 give 

the results of the second order system identification. 

Regarding the zoomed response curve, the lowest error 

value between the reference signal and the output curves 

was obtained by the Levenberg-Marquardt and Gauss-

Newton algorithms. 

 
Fig. 5.  Simulation results of system identification model fitting algorithms 

(second order). 

 
Fig. 6.  Zoom area for Fig. 5. 

On the other hand, the desired results were not obtained 

when the data packages of the system were used in the 

Adaptive Gauss-Newton method. 

B. Experimental Results 

This chapter discusses trials of the VSIMLABS servo 

control equipment.  
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TABLE II. PERFORMANCE PERCENTAGES OF RESPONSE CURVES OBTAINED BY SYSTEM IDENTIFICATION ALGORITHMS (1D: FIRST 

ORDER, 2D: SECOND ORDER, 3D: THIRD ORDER). 

 

Transfer Function Performance Percentages 

First Order Second Order Third Order 1D 2D 3D 
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N
ew
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232.2s 
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9013
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5
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2 5

1.007 10
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
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6

3 2 4 6
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Figures 7 and 8 show the application results obtained 

when using the RLS Kalman filter algorithm for the RLS-

based adaptive control method in a constant load 

environment. Regarding the output curves of the system, the 

maximum performance of the system is obtained for the 

value of R1 = 0.3. According to these results, the applied 

control method learned the system as the iterations 

progressed. 

 
Fig. 7.  Kalman filter system output for the initial load condition. 

 
Fig. 8.  Zoom area for Fig. 7. 

Figures 9 and 10 show the change curves in the 

parameters obtained by the feedback gain matrix value and 

the recursive least squareslow  method. For the findings, the 

estimated parameter values are constantly updated, and the 

system output produces good results in parallel. Then, the 

results that were obtained when the variable load effect is 

added to the system after the 100th second are given.  

 
Fig. 9.  Change of gain matrix value. 

 
Fig. 10.  Change of system parameters for the initial load condition. 

The response in Fig. 11 shows that the load that affects 

the system with the designed controller is minimized. 

Regarding the expanded response curve in Fig. 12, although 

there are high-amplitude oscillations for the gain value R1 = 

0.3, it does not affect the system performance after the load 

effect. 

On the other hand, maximum system performance was 

obtained for the value of R1 = 0.3. The load effect was 

quickly compensated with this proposed method; the output 

signal settled on the reference signal with low-amplitude 

oscillation. Figures 13 and 14 show the change in feedback 

gain matrix value lqrK  and parameters that were estimated 
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by the RLS method, respectively. 

 
Fig. 11.  Kalman filter output responses (load added at 100 seconds). 

 
Fig. 12.  Zoom area for Fig. 11. 

 
Fig. 13.  Change of gain matrix value for variable load after 100th second. 

 
Fig. 14.  Change of system parameters for variable load after 100th second. 

The results obtained using the RLS Kalman filter 

algorithm in this study are given above. Also, forgetting 

factor algorithm is used for the VLS system, and the results 

are given in Figures 15 and 16. According to the reference 

index given in Table III, it was concluded that the proposed 

method produced the desired results. 

 
Fig. 15.  Result of RLS Kalman filter and RLS forgetting factor. 

 
Fig. 16.  Zoom area for Fig. 15 (after 100th second). 

TABLE III. VLS SYSTEM PERFORMANCE INDEX RESULTS (ISE: 

INTEGRAL SQUARE ERROR, IAE: INTEGRAL ABSOLUTE ERROR, 

ITAE: INTEGRAL TIME ABSOLUTE ERROR). 

Method ISE IAE ITAE 

RLS Kalman filter 3.240  2.214  61.94  

RLS forgetting factor 3.548  2.343  57.89  

 

In the previous study [19], the LQR method was applied 

to the same system with the discrete-time Kalman filter. 

However, when the transient response analysis was 

performed for this system, multiple oscillations and 

amplitudes with high values occurred. The oscillations and 

high amplitudes in this system are compensated by the 

proposed method.  

VII. CONCLUSIONS 

First, the parameter estimations of the system were 

performed by the least squares method in the state feedback 

control design using the least squares method. Online 

discrete-time A, B, C, D, R, and Q matrix calculations were 

made with these parameters. Thus, the optimal lqrK  value 

was calculated and a high-performance controller was 

designed via the updated system matrix values online. A 

high-performance controller design was carried out. 

Moreover, an RLS system identification block running in 

the background is also added to the system. The RLS 

method is a good learning technique and it also gives 

desired results with updated parameter values compared to 

the previous iteration. For this reason, it is impossible to 

receive the desired response in the first iteration. Block 

initial conditions in the system identification block are 

defined taking into account the known constant load VLS 

system parameters to quickly solve this problem. Thus, the 

performance is improved. It is observed that it works under 

the desired criteria when the RLS-based state feedback 

control method is applied to the system. According to the 

results, disruptive effects such as variable load and noise in 

the system are minimized and the system is ensured to 

operate at high efficiency. In the adaptive state feedback 

control system designed using the least squares method, the 

forgetting factor or Kalman filter value is entered manually, 

and the optimum value is found by observing the results. An 

adaptation mechanism that enables this value to be updated 

online is important for system performance. Future works 

aim to solve this problem. 
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